Commit Graph

392 Commits

Author SHA1 Message Date
cyy
e872c38eb3 Remove cppcoreguidelines-pro-type-member-init_fix suppression (#148638)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148638
Approved by: https://github.com/zou3519
2025-04-02 01:33:20 +00:00
Simon Fan
748252378d [ca] introduce RuntimeState to support c++ hooks via graph breaks (#149987)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149987
Approved by: https://github.com/jansel
ghstack dependencies: #149647, #149709, #149651, #149897
2025-03-27 05:05:34 +00:00
Simon Fan
dcb378cff2 [ca] support anomly mode nan checks with different semantics than eager (#149897)
see note in code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149897
Approved by: https://github.com/jansel
ghstack dependencies: #149647, #149709, #149651
2025-03-27 05:05:34 +00:00
William Wen
a66a9581da [dynamo] support Python 3.13t (#149549)
A few bug fixes to get Dynamo mostly working with 3.13 nogil. Dynamo encounters internal CPython assert errors in older versions of 3.13. The fix has been landed on [CPython's 3.13 branch](https://github.com/python/cpython/tree/3.13) and will be included in 3.13.3 (https://peps.python.org/pep-0719/ - april 8). If you wish to try `torch.compile` on the latest 3.13 branch, you can comment out the error checking (i.e. 70b6cd4e11/torch/__init__.py (L2535) and 70b6cd4e11/torch/_dynamo/eval_frame.py (L899)).

We will work on getting PyTorch CI up for Dynamo/dynamo-wrapped/inductor once 3.13.3 is available.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149549
Approved by: https://github.com/jansel
2025-03-20 09:49:27 +00:00
Animesh Jain
f9a787224c [dynamo][guards][serialization] Dont use ID_MATCH guard for bool and None (#149228)
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
2025-03-18 01:25:37 +00:00
PyTorch MergeBot
b52a8bef01 Revert "[dynamo][guards][serialization] Dont use ID_MATCH guard for bool and None (#149228)"
This reverts commit 5905bbe745.

Reverted https://github.com/pytorch/pytorch/pull/149228 on behalf of https://github.com/malfet due to I wonder if this will fix the pr-time-benchmark regressions ([comment](https://github.com/pytorch/pytorch/pull/149228#issuecomment-2731237949))
2025-03-18 00:10:50 +00:00
Animesh Jain
5905bbe745 [dynamo][guards][serialization] Dont use ID_MATCH guard for bool and None (#149228)
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
2025-03-16 15:56:17 +00:00
Simon Fan
578160c875 [ca] don't inline accumulate grad op (#149014)
we use dummy tensors in our initial trace, so we should never inline. the subclass dispatch might not support the dummy tensor, e.g. DTensor accumulate grad will check that both param and grad are DTensors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149014
Approved by: https://github.com/jansel
ghstack dependencies: #149064
2025-03-15 01:10:54 +00:00
Simon Fan
e6f560a262 [ca] support for dynamic shapes CopySlices (#148799)
i'm changing CA initial trace to always trace as dynamic, fixes these errors:
```python
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.2139s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_autograd_python_custom_function_inplace - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_autograd_python_custom_function_inplace
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0057s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_copy_slices_graph_task_updates - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_copy_slices_graph_task_updates
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.9662s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_inplace_on_view_weak_grad_fn - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_inplace_on_view_weak_grad_fn
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0077s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_leaf_assignment - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_leaf_assignment
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [5.0485s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_setitem_mask - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_setitem_mask
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0102s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_tensor_hooks_inplace_over_view - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
    python test/test_autograd.py TestAutogradWithCompiledAutograd.test_tensor_hooks_inplace_over_view
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148799
Approved by: https://github.com/jansel, https://github.com/zou3519
2025-03-13 17:30:20 +00:00
cyy
8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00
Animesh Jain
992838e702 [dynamo][guards] Do not ID_MATCH on numpy tensors (#148923)
Might help with https://github.com/pytorch/pytorch/issues/148535

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148923
Approved by: https://github.com/jansel
2025-03-11 14:20:26 +00:00
Simon Fan
457ff9b7ae [reland][ca] side-effect free inital trace: compiled_args (#148376)
This reverts commit ea12fc8a9f.
Reland https://github.com/pytorch/pytorch/pull/147804, there was a bad import inserted by my linter.

Differential Revision: [D70582747](https://our.internmc.facebook.com/intern/diff/D70582747)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148376
Approved by: https://github.com/jansel
2025-03-11 01:57:36 +00:00
Aditya Tiwari
bb9c426024 Typo Errors fixed in multiple files (#148262)
# Fix typo errors across PyTorch codebase

This PR fixes various spelling errors throughout the PyTorch codebase to improve documentation quality and code readability.

## Changes Made

### Documentation Fixes
- Changed "seperate" to "separate" in multiple files:
  - `setup.py`: Build system documentation
  - `torch/_library/triton.py`: AOT compilation comments
  - `torch/csrc/dynamo/compiled_autograd.h`: Node compilation documentation
  - `torch/export/_unlift.py`: Pass population comments
  - `torch/export/exported_program.py`: Decomposition table notes

### Code Comments and Error Messages
- Changed "occured" to "occurred" in:
  - `test/mobile/test_lite_script_module.py`: Exception handling comments
  - `torch/export/_draft_export.py`: Error message text
  - `aten/src/ATen/native/cuda/linalg/BatchLinearAlgebra.cpp`: MAGMA bug comment
  - `torch/csrc/utils/python_numbers.h`: Overflow handling comment
  - `torch/csrc/jit/OVERVIEW.md`: Graph compilation documentation
  - `torch/_dynamo/symbolic_convert.py`: Error explanation

### API Documentation
- Changed "fullfill" to "fulfill" in `torch/distributed/checkpoint/state_dict_loader.py`
- Changed "accross" to "across" in:
  - `torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp`
  - `torch/distributed/distributed_c10d.py`

## Motivation
These changes improve code readability and maintain consistent spelling throughout the codebase. No functional changes were made; this is purely a documentation and comment improvement PR.

## Test Plan
No testing required as these changes only affect comments and documentation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148262
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-09 12:21:40 +00:00
cyy
f7c0c230b0 Fix compile errors (#148758)
Fix
```
  /usr/bin/../lib64/gcc/x86_64-pc-linux-gnu/14.2.1/../../../../include/c++/14.2.1/bits/unique_ptr.h:91:16: error: invalid application of 'sizeof' to an incomplete type 'torch::jit::AliasDb::WriteRegistry'
     91 |         static_assert(sizeof(_Tp)>0,
        |                       ^~~~~~~~~~~
  /usr/bin/../lib64/gcc/x86_64-pc-linux-gnu/14.2.1/../../../../include/c++/14.2.1/bits/unique_ptr.h:399:4: note: in instantiation of member function 'std::default_delete<torch::jit::AliasDb::WriteRegistry>::operator()' requested here
    399 |           get_deleter()(std::move(__ptr));
        |           ^
  ../torch/csrc/jit/ir/alias_analysis.cpp:200:10: note: in instantiation of member function 'std::unique_ptr<torch::jit::AliasDb::WriteRegistry>::~unique_ptr' requested here
    200 | AliasDb::~AliasDb() = default;
        |          ^
  ../torch/csrc/jit/ir/alias_analysis.cpp:200:23: note: in defaulted destructor for 'torch::jit::AliasDb' first required here
    200 | AliasDb::~AliasDb() = default;
        |                       ^
  ../torch/csrc/jit/ir/alias_analysis.h:298:10: note: forward declaration of 'torch::jit::AliasDb::WriteRegistry'
    298 |   struct WriteRegistry;
        |          ^
  1 error generated.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148758
Approved by: https://github.com/Skylion007
2025-03-08 04:56:42 +00:00
Animesh Jain
713a504a82 [dynamo][guards] Fix mem leak caused be refcount increment (#148480)
Should help [internalfb.com/sevmanager/view/491701](https://www.internalfb.com/sevmanager/view/491701)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148480
Approved by: https://github.com/xmfan, https://github.com/StrongerXi, https://github.com/williamwen42, https://github.com/zou3519
2025-03-05 01:04:08 +00:00
rzou
a907b6abae [compiled_autograd] workaround windows compilation issue (#148454)
torch.compile doesn't work on windows so we can ifdef-away the problem.
I do not know what the root cause actually is. Most notably, the pytorch
windows build is fine, but some third-party projects that use pytorch headers
on windows (e.g. torchaudio) have issues.

Test Plan:
- wait for CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148454
Approved by: https://github.com/atalman, https://github.com/xmfan
2025-03-05 00:18:20 +00:00
William Wen
40b3e4a358 [dynamo] expose code execution strategy to python (#148020)
@anijain2305 this can be used to mark a code object to be skipped/run-only (recursively) while tracing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148020
Approved by: https://github.com/jansel
2025-02-28 21:59:12 +00:00
Wouter Devriendt
ea12fc8a9f Revert D70262395 (#148164)
Summary:

This reverts #147804 due to internal revert.

---
This diff reverts D70262395

Reviewed By: RossMcKenzie

Differential Revision: D70318024

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148164
Approved by: https://github.com/xmfan
2025-02-28 06:39:48 +00:00
Simon Fan
fd43c36aa9 [ca] side-effect free initial trace: RAII PyCompilerInterface (#147891)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147891
Approved by: https://github.com/jansel
ghstack dependencies: #147242, #147796, #147804
2025-02-27 07:17:30 +00:00
Simon Fan
fd1220e386 [ca] side-effect free inital trace: compiled_args (#147804)
const methods to prevent accidental mutation. changes mainly in Error nodes and PyNode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147804
Approved by: https://github.com/jansel
ghstack dependencies: #147242, #147796
2025-02-26 16:37:27 +00:00
Simon Fan
5e3069dde8 [ca] side-effect free initial trace: GraphTask (#147796)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147796
Approved by: https://github.com/jansel
ghstack dependencies: #147242
2025-02-26 16:37:27 +00:00
Simon Fan
0a2da008f8 [ca] trace saved variable unpacking (#147242)
## Before

Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.

## After

We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
  def unpack(self):
    if self.hook:
      return self.hook(self.packed_data)
    else:
      return self.packed_data

# This approach won't directly work when we add support for Forward AD or double-backward.
```

Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.

All tests pass when running the CA graph directly, the remaining issues are in Dynamo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
2025-02-26 16:37:17 +00:00
PyTorch MergeBot
90e3a3d86d Revert "[ca] trace saved variable unpacking (#147242)"
This reverts commit 68ddca9449.

Reverted https://github.com/pytorch/pytorch/pull/147242 on behalf of https://github.com/wdvr due to failing tests in the slow workflow, see below ([comment](https://github.com/pytorch/pytorch/pull/147242#issuecomment-2683604547))
2025-02-26 00:40:16 +00:00
PyTorch MergeBot
4d614baa30 Revert "[ca] side-effect free initial trace: GraphTask (#147796)"
This reverts commit 5758743f3c.

Reverted https://github.com/pytorch/pytorch/pull/147796 on behalf of https://github.com/wdvr due to failing tests in the slow workflow, see below ([comment](https://github.com/pytorch/pytorch/pull/147796#issuecomment-2683599896))
2025-02-26 00:36:08 +00:00
PyTorch MergeBot
143f0f0006 Revert "[ca] side-effect free inital trace: compiled_args (#147804)"
This reverts commit ec768d8dc0.

Reverted https://github.com/pytorch/pytorch/pull/147804 on behalf of https://github.com/wdvr due to failing tests in the slow workflow, see below ([comment](https://github.com/pytorch/pytorch/pull/147804#issuecomment-2683594740))
2025-02-26 00:31:40 +00:00
Animesh Jain
276dfe8150 [dynamo][cpp-guards] Disable dict-tag optim if the guard_manager has child accessors (#147694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147694
Approved by: https://github.com/isuruf
2025-02-26 00:02:08 +00:00
Simon Fan
ec768d8dc0 [ca] side-effect free inital trace: compiled_args (#147804)
const methods to prevent accidental mutation. changes mainly in Error nodes and PyNode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147804
Approved by: https://github.com/jansel
ghstack dependencies: #147242, #147796
2025-02-25 20:38:51 +00:00
Simon Fan
5758743f3c [ca] side-effect free initial trace: GraphTask (#147796)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147796
Approved by: https://github.com/jansel
ghstack dependencies: #147242
2025-02-25 20:38:51 +00:00
Simon Fan
68ddca9449 [ca] trace saved variable unpacking (#147242)
## Before

Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.

## After

We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
  def unpack(self):
    if self.hook:
      return self.hook(self.packed_data)
    else:
      return self.packed_data

# This approach won't directly work when we add support for Forward AD or double-backward.
```

Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.

All tests pass when running the CA graph directly, the remaining issues are in Dynamo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
2025-02-25 20:38:51 +00:00
Aaron Orenstein
be0df96b50 Fix c++ implementation of strip_function_call (#147436)
#143063 was missing handling a couple UCS cases as well as had some bugs in the way it dealt with errors.

- Fix all the UCS handling (and make some of the common code more common)
- Make sure all the error paths return `nullptr`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147436
Approved by: https://github.com/jansel
2025-02-20 20:41:21 +00:00
William Wen
63e8ad49b8 [dynamo] replace hardcoded eval frame control flags skip_code_recursive_flag/cache_limit_hit_flag (#146355)
This PR and the previous:
- Moves parts of `eval_frame.c` to C++.
- Reduces code duplication in `dynamo__custom_eval_frame` and makes the control flow more clear.
- Enables `convert_frame` to signal to `eval_frame.cpp` in a general manner how to evaluate this frame, recursive frames, and future frames with the same code object (default/compile, skip, run-only). e.g. this will allow us to change skipping/cache limit hit eval_frame behavior directly from convert_frame without requiring changes to C/C++.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146355
Approved by: https://github.com/jansel
ghstack dependencies: #145603
2025-02-18 21:37:12 +00:00
William Wen
75db0fd8a0 [dynamo] refactor dynamo__custom_eval_frame to C++, refactor SKIP_CODE[_RECURSIVE] (#145603)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145603
Approved by: https://github.com/jansel, https://github.com/anijain2305
2025-02-18 21:37:12 +00:00
Animesh Jain
9dc702875d [dynamo][mappingproxy][inspect] Support existing types.MappingProxyType (#147217)
Fixes https://github.com/pytorch/pytorch/issues/147162

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147217
Approved by: https://github.com/williamwen42
2025-02-15 07:59:33 +00:00
cyy
8daa742e8b Remove code for Python < 3.9 (#147181)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147181
Approved by: https://github.com/albanD
2025-02-15 06:43:26 +00:00
Shunting Zhang
bc0191802f [inductor] add size-asserts for fallback ops (#145904)
Fix https://github.com/pytorch/pytorch/issues/144717

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145904
Approved by: https://github.com/jansel
2025-02-07 18:44:32 +00:00
Simon Fan
72405b0c0f [ca] refactor compile reasons and log to tlparse (#146386)
This PR accumulates comple reasons inside each CacheNode, and logs them to tlparse on each CA compile. This defines a compile as an autograd structure change, and a recompile as a dynamic shape change.

sample tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpdbo7gt/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=100

for compiles:
```python
[
  "!0: Cache miss due to new autograd node: torch::autograd::GraphRoot (NodeCall 0) with key size 39, previous key sizes=[]"
]
```

for recompiles:
```python
[
  "!0: Cache miss due to new autograd node: torch::autograd::GraphRoot (NodeCall 0) with key size 39, previous key sizes=[]",
  "!1: Cache miss due to 7 changed tensor shapes (total of 7): sizes[0], sizes[1], sizes[2], sizes[3], sizes[4], sizes[5], sizes[6]"
]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146386
Approved by: https://github.com/jansel
ghstack dependencies: #146229
2025-02-05 23:33:21 +00:00
Simon Fan
e20b0c82d1 [ca] no longer require is_traceable annotations for c++ autograd functions (#146229)
This PR removes the CA compile-time error for C++ autograd functions, and supports them by having dynamo graph break on them (instead of allow_in_graph). The CppNode's collects are kept as is for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146229
Approved by: https://github.com/jansel, https://github.com/zou3519
2025-02-05 08:49:17 +00:00
Isuru Fernando
08b14936ae Disable has_relational_guards check for dict_tag optimization for now (#146232)
has_relational_guards evaluates to true almost always, and leads to a
slowdown in guards runtime

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146232
Approved by: https://github.com/anijain2305
2025-02-03 07:56:06 +00:00
William Wen
5b1abdbf5d [dynamo] remove always-failing eval_frame.c debug check (#145982)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145982
Approved by: https://github.com/StrongerXi, https://github.com/jansel
ghstack dependencies: #145981
2025-01-31 20:40:59 +00:00
PyTorch MergeBot
3481c2aec4 Revert "[dynamo] save/restore system random state more carefully (#145750)"
This reverts commit e3d3f2b22e.

Reverted https://github.com/pytorch/pytorch/pull/145750 on behalf of https://github.com/eellison due to bisected perf regression ([comment](https://github.com/pytorch/pytorch/pull/145750#issuecomment-2620028414))
2025-01-28 20:51:07 +00:00
William Wen
e3d3f2b22e [dynamo] save/restore system random state more carefully (#145750)
Reattempt of https://github.com/pytorch/pytorch/pull/145435 since the state of the linked internal diff appears to be messed up.

Note: I have verified that the previously failing internal tests now pass internally.

Differential Revision: [D68723334](https://our.internmc.facebook.com/intern/diff/D68723334)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145750
Approved by: https://github.com/StrongerXi
2025-01-28 01:34:13 +00:00
rzou
ea141d8134 functional compiled autograd (#144707)
This PR squashes together the following commits:

https://github.com/pytorch/pytorch/pull/144115
https://github.com/pytorch/pytorch/pull/143417
https://github.com/pytorch/pytorch/pull/143405
https://github.com/pytorch/pytorch/pull/143387
https://github.com/pytorch/pytorch/pull/143304
https://github.com/pytorch/pytorch/pull/143296

This is a refactor of compiled autograd to use "functional autograd". The end goal is that it gets compiled autograd's initial capture to stop specializing on Tensor metadata, therefore allowing compiled autograd to better handle Tensor subclasses.

For more information, please read the commit messages for each PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144707
Approved by: https://github.com/bdhirsh, https://github.com/xmfan, https://github.com/jansel
2025-01-27 05:20:56 +00:00
wengshiy
73622fc5fa Fix Throughputbenchmark issue (#144669)
Fixes [144461](https://github.com/pytorch/pytorch/issues/144461)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144669
Approved by: https://github.com/leslie-fang-intel, https://github.com/williamwen42, https://github.com/jansel
2025-01-26 03:37:20 +00:00
PyTorch MergeBot
6dd8283381 Revert "[compiled autograd] Proxy opaque nodes for built-in autograd nodes (#143296)"
This reverts commit 5531fafffe.

Reverted https://github.com/pytorch/pytorch/pull/143296 on behalf of https://github.com/izaitsevfb due to breaking internal tests T213390054 ([comment](https://github.com/pytorch/pytorch/pull/143296#issuecomment-2611224926))
2025-01-23 23:34:13 +00:00
PyTorch MergeBot
9553301ade Revert "[compiled autograd] Proxy nodes for user-defined C++ torch::autograd::Function (#143387)"
This reverts commit 784bb2127c.

Reverted https://github.com/pytorch/pytorch/pull/143387 on behalf of https://github.com/izaitsevfb due to breaking internal tests T213390054 ([comment](https://github.com/pytorch/pytorch/pull/143296#issuecomment-2611224926))
2025-01-23 23:34:13 +00:00
PyTorch MergeBot
3f6cfd0156 Revert "[compiled autograd] stop specializing on metadata during initial trace (#143417)"
This reverts commit 99dd1bf1b9.

Reverted https://github.com/pytorch/pytorch/pull/143417 on behalf of https://github.com/izaitsevfb due to breaking internal tests T213390054 ([comment](https://github.com/pytorch/pytorch/pull/143296#issuecomment-2611224926))
2025-01-23 23:34:12 +00:00
Animesh Jain
015c6d6fdb [dynamo][guards] Turn on profiling of guard manager (#145420)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145420
Approved by: https://github.com/ezyang
ghstack dependencies: #145351
2025-01-23 18:17:43 +00:00
Bartlomiej Stemborowski
3a8d3785f7 [ca][bug_fix] Fix ref counting of objects in the set_autograd_compiler function. (#145482)
PR#141153 exposed the option to collect sizes as dynamic. After this
change, the function set_autograd_compiler returns PyTuple object which
is populated using PyTuple_SET_ITEM function. Yet, that function steals
reference to the object and doesn't INCREF it. So currently we are
missing INCREF on prior_compiler when it is Py_None and INCREF on
prior_dynamic which is either Py_False or Py_True. This bug may lead to
the possible memory corruption.

@xmfan @jansel @albanD

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145482
Approved by: https://github.com/albanD, https://github.com/jansel
2025-01-23 17:13:56 +00:00
rzou
99dd1bf1b9 [compiled autograd] stop specializing on metadata during initial trace (#143417)
The previous PRs built up to this. We change compiled autograd's initial
trace to stop baking in metadata.

While tracing, we allocate some weirdly shaped tensors that we can put
proxies on. The initial trace should not be accessing any metadata of
these tensors (it will likely error out if it does because of how weird
the shapes are).

This involved fixing some various sites where we do specialize on the
metadata, like:
- we change CopySlices's apply_with_saved to proxy some calls
  into the graph (this change is fairly hard to split out by itself).
- we stop calling InputBuffer::add
- we delete the weird metadata from the graph so that no graph passes
  can make use of it.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143417
Approved by: https://github.com/jansel, https://github.com/xmfan
ghstack dependencies: #143296, #143304, #143387, #143405
2025-01-22 21:51:07 +00:00
rzou
784bb2127c [compiled autograd] Proxy nodes for user-defined C++ torch::autograd::Function (#143387)
We define a functional version of a C++ torch::autograd::Function. The
functional version reconstructs the ctx object and then calls
backward with it.

Some more details:
- we define how to pack/unpack ctx.saved_data into an IValue. It's a
  Dict[str, IValue], so it wasn't difficult.
- every call to CppNode::apply_with_saved binds a new function to
  Python. This is because we're unable to reuse the a previously bound
  function for reasons (the schema may change depending on what the user
  actually puts into their Dict[str, IValue]).

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143387
Approved by: https://github.com/jansel, https://github.com/xmfan
ghstack dependencies: #143296, #143304
2025-01-22 21:50:47 +00:00