**Summary**
This PR adds a lowering pass for x86 backend
- Patterns of `dequantize -> conv/linear (-> quantize)` are fused to corresponding quantized onednn ops.
- Weights are prepacked ahead of time.
- Post ops of conv/linear are fused if supported.
- The pass returns a `GraphModule` with the modifications mentioned above.
**Test plan**
```
pytest test/quantization/pt2e/test_x86inductor_quantizer.py -k test_lowering_to_x86
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149708
Approved by: https://github.com/jerryzh168, https://github.com/leslie-fang-intel
# Motivation
This PR intends to enable quantized fusion `qlinear+add` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary")` and `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary_tensor")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_add_xpu
```
# Runtime Verification
```bash
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_f32::blocked:ab::f0_mask2 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu,,4x4:4x4,0.0319824
```
The verbose is collected from UT. We can see the attribute ` attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu`, the post add and ReLU is successfully fused on GEMM computation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135337
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/liangan1, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189
Co-authored-by: guangyey <guangye.yu@intel.com>
# Motivation
This PR intends to enable quantized fusion `qconv+add` and `qconv+add+relu` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qconv2d_pointwise.binary")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_add_xpu \
-k test_qconv2d_add_relu_xpu 2>&1
```
# Runtime exemplification
Following is the oneDNN verbose collected from UT
```bash
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_s8::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32+dst:0:s32 attr-post-ops:eltwise_linear:1:0.337704+sum:0.0241217+eltwise_relu,alg:convolution_direct,mb1_ic3oc6_ih8oh6kh3sh1dh0ph0_iw8ow6kw3sw1dw0pw0,0.151123
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135189
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/jerryzh168
ghstack dependencies: #133307
Co-authored-by: guangyey <guangye.yu@intel.com>
# Motivation
The PR is intended to enable `onednn.qlinear` and `onednn.qlinear_unary` at Intel GPU.
We register the qlinear ops at C++ backend via `TORCH_LIBRARY_IMPL`, the op this PR registers includes `onednn::qlinear_pointwise`, `onednn::qlinear_pointwise.tensor`, and `onednn::qlinear_prepack`. The prepack conduct transpose on weight for fitting oneDNN requirement on weight to acquire higher performance.
Also, we remove the limitation of the corresponding annotation method in the `XPUInductorQuantizer` (`torch/ao/quantization/quantizer/xpu_inductor_quantizer.py`) to allow GPU linear conversion.
We add the kChar(`torch.int8`) dtype in the `torch/_inductor/fx_passes/quantization` and `torch/_inductor/mkldnn_ir.py`, as signed int8 is the default INT8 data type at GPU side.
We verified the op through UTs and e2e model testing like ResNet18, ResNet50.
# UT verification
```
DNNL_VERBOSE=0 TORCH_COMPILE_DEBUG=0 python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_xpu \
-k test_qlinear_relu_xpu \
-k test_qlinear_gelu_xpu
```
# Runtime exemplification
Here is the oneDNN verbose collected through running above UTs
```
//pure int8 gemm
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 dst_s8::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32+dst:0:s32,,2x4:4x3,0.187988
// post-relu fusion
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_f32::blocked:ab::f0_mask2 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_relu,,2x4:4x4,0.115234
// post-gelu fusion
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_gelu_tanh,,2x4:4x4,0.170898
````
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133307
Approved by: https://github.com/liangan1, https://github.com/guangyey, https://github.com/EikanWang, https://github.com/jerryzh168
Co-authored-by: guangyey <guangye.yu@intel.com>
This enables a check that which a class which only inherits from immutable classes like str, tuple, and NamedTuple, also defined `__slots__` so they don't allocate memory unnecessarily. This also ensure contributors think about how they define their classes with subclass NamedTuples and str, of which we have many in our codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146276
Approved by: https://github.com/aorenste
Summary:
https://github.com/pytorch/pytorch/pull/141421
duplicated affine quantization custom ops from torchao into
the PT2E quantization flow, but these ops are registered under
the same namespace with the same name, causing "Duplicate
registration" errors for the new ops for use cases that import
from both repos. This commit fixes this by moving the PT2E
versions of the ops to a new namespace. In the long term,
we expect to migrate PT2E into torchao so users can migrate
back to the old namespace if they wish to.
Test Plan: python test/test_quantization.py -k test_channel_group_quantization
Differential Revision: D68838437
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145941
Approved by: https://github.com/cccclai
Currently the `bias` attribute of `torch.nn.Linear` (and `Bilinear`) is typed incorrectly, because it relies on the implicit `Module.__getattr__` which types it as `Tensor | Module`. This has two issues:
- It hides the fact that `bias` is optional, and can be `None`, which in turn can hide actual bugs on user side.
- It blurs the type due to having `Module` in the union, which can require unnecessary `isistance(linear.bias, Tensor)` on user side.
This PR types the `bias` attribute explicitly to fix these issues.
CC @ezyang @Skylion007
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142326
Approved by: https://github.com/ezyang
Summary:
This replicates XNNPACKQuantizer from PyTorch to ExecuTorch.
Rationale:
Main motivation is to avoid pytorch pin update in OSS after updating XNNPACKQuantizer, which can be rather frequent.
Other impact and considerations:
PT2e flow (which lives in PyTorch) relies havily on XNNPACKQuantizer for a "example" implementation for quantizer and more importantly tests. Fow now, we will keep the torch.ao.quantization.xnnpack_quantizer as is but mark is as not BC, and deprecated to discourace future new dependencies on it.
Other OSS repository using XNNPACKQuantizer from PyTorch now have to take an additional dependency on ExecuTorch.
Differential Revision: D68191752
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144940
Approved by: https://github.com/jerryzh168, https://github.com/mcr229
Summary:
If module being quantized contains a some meta tensors and some tensors with actual device, we should not fail quantization.
Quantization should also not fail if new quantized module is created on a meta device.
Differential Revision: D66895899
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142262
Approved by: https://github.com/iamzainhuda