This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Recently I've been experimenting with introducing new APIs to delay compile as a way to reduce compile times while improving the ergonomics of using dynamic shapes. The high level idea is to run the first invocation of compile in eager, save the example inputs, and on the second invocation we can derive the dynamism in the inputs so that we don't need to waste our time doing a compile with static shapes (which is the status quo today with automatic dynamic).
Another benefit of this is most users no longer need to annotate their inputs with mark_dynamic and mark_unbaked calls since we can derive the dynamism on the very first call. Additionally we get dynamic ints out of the box in this new regime.
This PR implements this idea through the set_stance APIs. In particular it introduces a new `eager_then_compile` stance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147983
Approved by: https://github.com/williamwen42
Summary: Gather the compilation time of individual triton kernels and log them to dynamo_compile:
* Time compilation in `_worker_compile_triton` and pass back to the main process and logged from `get_result()`.
* Added a way to track the "top N" (or N most-expensive compiles) in the metrics_context. I did this because I doubt we really care to capture potentially thousands of kernel compile times. That would be problematic for scuba logging anyway, so let's limit the number we track from the beginning. Arbitrarily chose 25 for now.
* Format the list of compile times as a json string before logging.
Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
Scuba: https://fburl.com/scuba/dynamo_compile/sandbox/nc4dzm3r
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147022
Approved by: https://github.com/jamesjwu
We've root caused this to correctly throwing attribute error on ScriptFunction
when missing attributes are caused. This PR will fix crashes that are showing
up. I'm going to stack a second PR to fix torch._c.ScriptFunction just being a
very badly behaving python object (which should also fix this
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147894
Approved by: https://github.com/jansel
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
This PR introduces the ability to whitelist sources as dynamic. This is particularly useful for large models with graph breaks, as you can keep the dynamism across graph breaks since source names stay consistent. Additionally you can use this to mark ints as dynamic.
NB: I intentionally didn't complicate the interface by supporting specification of per dimension dynamism. There is virtue in keeping true to the standard way of representing sources (eg. L['x']). If we find in practice that we need more more fine grained control, we can explore further affordances at that time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147979
Approved by: https://github.com/Mingming-Ding
Earlier, with inline flag we were lifting id-guarded tensors to the inputs to the Fx graph. But this offers no benefit. Main idea behind lifting parameters as inputs was to reuse the compilation units across many instances of the nn-module. However, if we are guarding on the `id`, we are explicitly specializing the compiled artifact to the parameter.
This PR installs the parameters back into the graph. The benefit is removal of all pre-graph bytecode to extract the id-guarded tensors from locals/globals. This increases speedup from 1.67x to 1.75x for an internal model that has large number of optimizer parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147824
Approved by: https://github.com/jansel
Co-authored-by: Jason Ansel <jansel@meta.com>
As title. Without this patch we get the following error:
Tweaking the `allow_non_fake_inputs` flag on tensor mode doesn't quite
work for AOTAutograd, which also needs to fake-tensor-propagate the
`nonstrict_trace`-ed function, but that's _after_ Dynamo has handled the
`nonstrict_trace` processing and put the `flat_apply(...)` node into the graph.
So we can't easily to temporarily enable the `allow_non_fake_inputs`
flag on current fake mode, when AOTAutograd processes a `flat_apply`
node from Dynamo's `nonstrict_trace` handling. And after discussing
with zou3519, I decided to add a global `FakeTensorTLS` that contains a
`allow_non_fake_inputs_override` flag, and patch the `nonstrict_trace`-ed
function to temporarily tweak this flag during its execution.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147572
Approved by: https://github.com/zou3519
ghstack dependencies: #146714, #146367, #146950, #147571
## Context
> **Note:** `mark_traceable` got renamed to `nonstrict_trace` after
> offline discussion. The reasons are (1) it aligns with `torch.export`'s
> `nonstrict` notion, and (2) it's more definitive in behavior suggestion.
1. [Overall Design](https://docs.google.com/document/d/1O-dR2ZQaJQVt_v67AVcDCw2yJLtqgkZFwoXK0buEWRg/edit?tab=t.0)
2. [Dynamo graph representation with `torch._higher_order_ops.flat_apply`](https://docs.google.com/document/d/1YHl5nPTJvYeCPE5TO9uA18DPWNgUYGE4gCn6bFvXcBM/edit?tab=t.0#heading=h.xtw3hhbro4gn)
## Summary
This patch adds a `torch._dynamo.nonstrict_trace` decorator, which
currently is an enhanced version of `torch._dynamo.allow_in_graph` (see
docstring for their differences). Specifically, this patch focuses on
the UI and functionality prototyping/plumbing.
The main enhancement is supporting more input types, and the
implementation challenge lies in reconstructing the input objects from
Dynamo `VariableTracker` (while accounting for buffered side-effects and
guards). This patch takes a middle-ground (simple implementation with a
bit of user labor), by
1. asking the user to provide pytree registration for non-proxy-able
input types,
2. letting Dynamo trace through `pytree_flatten` (which accounts for
buffered side-effects and guards automatically),
3. and passing in the TreeSpec as a graph attribute constant into
`torch._higher_order_ops.flat_apply` (which unflattens the inputs and
invokes the underlying function).
## Next Steps
In subsequent patches, we will try to support the following:
- annotating on class method
- reads to global tensors
- inputs that contains `pytree.register_constant`-ed instances.
- function as input
- more output types (e.g., any pytree-registered type)
- `torch.nn.Module` as inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146367
Approved by: https://github.com/zou3519
ghstack dependencies: #146714
## Before
Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.
## After
We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
def unpack(self):
if self.hook:
return self.hook(self.packed_data)
else:
return self.packed_data
# This approach won't directly work when we add support for Forward AD or double-backward.
```
Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.
All tests pass when running the CA graph directly, the remaining issues are in Dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
Resubmission of #144974 which was reverted for unrelated reasons.
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147966
Approved by: https://github.com/danthe3rd
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
## Before
Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.
## After
We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
def unpack(self):
if self.hook:
return self.hook(self.packed_data)
else:
return self.packed_data
# This approach won't directly work when we add support for Forward AD or double-backward.
```
Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.
All tests pass when running the CA graph directly, the remaining issues are in Dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144974
Approved by: https://github.com/eqy, https://github.com/albanD
This PR aims to fix the invalid path for windows: `C:\\Users\\sdp\\AppData\\Local\\Temp\\tmp0wugz2qm\\dynamo\\code_state___main__.TestFxGraphCache.test_cache_hot_load_pgo:None:.pkl.lock`
Windows does not allow chars `\ / : * ? " < > |` in a path.
And this PR also replace `os.rename` to `os.replace` in torch/_dynamo/pgo.py because `os.replace` allows target file exists on Windows, but not `os.rename` .
| Function | `os.rename()` | `os.replace()` |
|--------------------------------|----------------------------|----------------------------|
| Rename a file | ✅ | ✅ |
| Move a file | ✅ | ✅ |
| Overwrite an existing file | ❌ (Error on Windows) | ✅ (Will overwrite) |
| Overwrite an existing directory | ❌ (Error on Windows) | ❌ (Error on Windows) |
| Move across disks | ❌ | ❌ |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147708
Approved by: https://github.com/jansel
Part of the required fix for https://github.com/intel/torch-xpu-ops/issues/1264.
To support `roi_align`, torchvision uses `is_compile_supported` in `torch/_dynamo/utils.py` to compile a non-deterministic version of the op for backwards passes. This PR adds XPU device to the supported compile devices.
The `is_compile_supported()` util function has extremely limited usage, only being used in `torchvision.ops.roi_align` and `torch.utils._content_store.has_storage()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147541
Approved by: https://github.com/guangyey, https://github.com/jansel
Co-authored-by: lei,zhenyuan <zhenyuan.lei@intel.com>
This PR removes the restrictions on general cases for XPU on Windows, allowing us to run Inductor UT on Windows.
Additionally, this series of PRs has also fixed all XPU Inductor UT issues on Windows. However, due to resource constraints, we have not yet set up a Windows CI pipeline online.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147347
Approved by: https://github.com/jansel, https://github.com/EikanWang
As title.
Many changes adapted from https://github.com/pytorch/pytorch/pull/129537.
Also this diff is only for *static* method of torchbind *attributes*. Some case that's not supported/tested:
- dynamic torchbind objects
- torchbind objects as an input to the module.
Note that in JIT Inductor, the attributes are lifted as inputs. So even if we just have torchbind objects as attributes, they will show up as inputs in the graph.
Example generated python code in torch.compile with inductor backend for the test case in `inductor/test_torchbind.py` (P1730554370):
```python
async_compile.wait(globals())
del async_compile
def call(args):
arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg1_1, (2, 3), (3, 1))
assert_size_stride(arg2_1, (2, 3), (3, 1))
buf2 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
cpp_fused_add_0(arg1_1, arg2_1, buf2)
del arg1_1
del arg2_1
# Topologically Sorted Source Nodes: [x, takes_foo_tuple_return], Original ATen: [aten.add]
buf3 = torch.ops._TorchScriptTesting.takes_foo_tuple_return.default(arg3_1, buf2)
buf4 = buf3[0]
assert_size_stride(buf4, (2, 3), (3, 1))
buf5 = buf3[1]
assert_size_stride(buf5, (2, 3), (3, 1))
buf6 = buf4; del buf4 # reuse
cpp_fused_add_1(buf6, buf5)
del buf5
# Topologically Sorted Source Nodes: [y, b], Original ATen: [aten.add]
buf7 = torch.ops._TorchScriptTesting.takes_foo.default(arg3_1, buf6)
del buf3
del buf6
buf8 = buf7
assert_size_stride(buf8, (2, 3), (3, 1))
# Topologically Sorted Source Nodes: [c], Original ATen: []
buf9 = torch.ops.higher_order.call_torchbind(arg3_1, 'add_tensor', buf2)
del arg3_1
del buf7
buf10 = buf9
assert_size_stride(buf10, (2, 3), (3, 1))
del buf9
buf11 = buf2; del buf2 # reuse
cpp_fused_add_2(buf11, buf8, buf10)
return (buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
import pickle
global arg3_1
arg3_1 = pickle.loads(b'\x80\x04\x95[\x00\x00\x00\x00\x00\x00\x00\x8c\x05torch\x94\x8c\x0cScriptObject\x94\x93\x94)\x81\x94]\x94(K\nK\x14e\x8c0__torch__.torch.classes._TorchScriptTesting._Foo\x94\x86\x94b.')
fn = lambda: call([arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146927
Approved by: https://github.com/angelayi
Our three main users are OK with this, with two of them (foreach_map,
invoke_quant) prefering it like this.
I was originally worried about BC issues (this now means you cannot add
any positional args) but I think that's not a concern -- one can always
add kwonly args.
Test Plan
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146730
Approved by: https://github.com/ydwu4, https://github.com/mlazos
Current implementation reads as: we will only actually use the "python_reducer" config if the DDP forward is compiled. Otherwise, we will silently fallback to C++ reducer + no DDPOptimizer.
I'm changing this behavior to always use the python reducer if the config is specified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147123
Approved by: https://github.com/fegin
fixes#145775
This is the first step in introducing a "strict" mode where we don't silent specialize and don't silent graph break. At a high level when we do mark_unbacked(... strict=True), anytime we specialize an unbacked symint we will explicitly error and tell the user their unbacked dimension was specialized to a single value.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147333
Approved by: https://github.com/laithsakka
This adds a strict mode `TORCHDYNAMO_UNBACKED_STRICT` to prevent graph breaking when we guard on data dependent. This is a better UX for those who are actively trying to make their model more dynamic, but aren't close enough to full graph to use that flag directly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147342
Approved by: https://github.com/laithsakka
This PR and the previous:
- Moves parts of `eval_frame.c` to C++.
- Reduces code duplication in `dynamo__custom_eval_frame` and makes the control flow more clear.
- Enables `convert_frame` to signal to `eval_frame.cpp` in a general manner how to evaluate this frame, recursive frames, and future frames with the same code object (default/compile, skip, run-only). e.g. this will allow us to change skipping/cache limit hit eval_frame behavior directly from convert_frame without requiring changes to C/C++.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146355
Approved by: https://github.com/jansel
ghstack dependencies: #145603
This isn't a no-op but I think it's fine. It changes the case where a
function f1 in a module in MOD_SKIPFILES calls a function f2 in one of
the deleted modules. Previously f2 would have been skipped, now f2 gets
inlined.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147013
Approved by: https://github.com/yanboliang
ghstack dependencies: #147016, #147012
This PR adds support for list subclasses. Among other things are
1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.
If this PR is hard to review, please let me know. I can break it into several small PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel
Adds a `invoke_quant` higher order operator as proposed [here](https://docs.google.com/document/d/1s2PfJlq6Q1F8l11CkTIC69BW1rEnGEgs6YmBC7hu8rA/edit?tab=t.0).
The primary motivations are
- Unifying scattered reasoning for quant operators throughout the code base
- Easy of pattern matching - see this very large pattern match expression [here](949fdd2997/torch/_inductor/fx_passes/post_grad.py (L390-L426). Compared to the pattern I have in the tests:
```
@register_graph_pattern(
CallFunction(
torch.ops.aten.mm,
CallFunction(
torch.ops.higher_order.invoke_quant,
Ignored(),
Ignored(),
Ignored(),
scheme="nf4",
),
Arg(),
),
pass_dict=test_pass,
)
```
- Ability to specify inductor specific logic, like codegen'ing the operators in lower precision, or forcing fusion to a matmul.
Example graph:
``` Python
===== AFTER POST GRAD =====
/data/users/eellison/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module):
def forward(self, arg0_1: "f32[8][1]cpu", arg1_1: "f32[8][1]cpu"):
# File: /data/users/eellison/pytorch/torch/_higher_order_ops/invoke_quant.py:87 in __call__, code: return invoke_quant_tracer(*args, **kwargs, quant_options=self) # type: ignore[call-arg]
repeated_subgraph0 = self.repeated_subgraph0
invoke_quant: "f32[8][1]cpu" = torch.ops.higher_order.invoke_quant(repeated_subgraph0, arg0_1, arg1_1, scheme = 'nf4'); repeated_subgraph0 = arg0_1 = arg1_1 = None
return (invoke_quant,)
class repeated_subgraph0(torch.nn.Module):
def forward(self, arg0_1: "f32[8][1]cpu", arg1_1: "f32[8][1]cpu"):
# File: /data/users/eellison/pytorch/torch/_higher_order_ops/invoke_quant.py:87 in __call__, code: return invoke_quant_tracer(*args, **kwargs, quant_options=self) # type: ignore[call-arg]
mul: "f32[8][1]cpu" = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = None
add: "f32[8][1]cpu" = torch.ops.aten.add.Tensor(mul, arg1_1); mul = arg1_1 = None
return add
```
The schema for `invoke_quant` is `torch.ops.higher_order.invoke_quant(subgraph, *args, scheme=None)` where the scheme will not always be present.
I wasn't sure exactly how the inductor specific configurations like `codgen_in_low_precision` should be passed through. I didnt want to stuff them all in as kwargs, and I didn't want to have them affect pattern matching. So they will be stored as meta of the node itself. And, following that, I wanted the invocation of the hop to match how it will show up in the graph. So I decided to have it be an object that is then invoked for the tracing.
```
invoke_quant = InvokeQuant(codegen_low_precision=True)
invoke_quant(gn, (x, y), scheme="nf4")
```
Todo - not require the packing of args in a tuple, will do following https://github.com/pytorch/pytorch/pull/139162.
Feedback welcome.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139102
Approved by: https://github.com/Chillee
`get_top()` is really confusing when talking about a stack, because it can mean the most recently started event on the stack or the toplevel event in perfetto(which displays the stack upside down). Rename to `get_outermost` and fix the bug associated with it, so that it returns the correct value out of the stack.
Running nanogpt now puts `guard_latency_us` correctly in the `dynamo` event:
```
tlp python benchmarks/dynamo/torchbench.py --backend inductor --device cuda --only nanogpt --amp --cold-start-latency --print-compilation-time --training --performance 2>&1 --dynamic-shapes | tee out.log
```
<img width="1281" alt="image" src="https://github.com/user-attachments/assets/4eeb371a-4d81-415a-acc4-7d303a4b2a93" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146649
Approved by: https://github.com/masnesral, https://github.com/anijain2305
Earlier if there were no ops in the graph, fullgraph=True will also fallback to eager. This hides issues in testing, where we silently fallback to eager, and do not test optimized bytecode. As can be seen in the PR, I had to fix several tests when I forced to use the optimized bytecode in the absence of graph. A few failing tests will be fixed in follow up PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146527
Approved by: https://github.com/zou3519, https://github.com/StrongerXi
Logging branches based on RecompileLimitExceeded or not. If we exceed the limit, we fallback to eager before even trying to analyze the frame. We handle RecompileLimitExceeded outside of the try/catch/finally that edits the metrics context:
72405b0c0f/torch/_dynamo/convert_frame.py (L908-L935).
dynamo_config and recompile_reason are both known before we raise the RecompileLimitExceeded, so we can add them with the rest of the "common" metrics. which are logged on metric_context decorator exit and is always called
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146544
Approved by: https://github.com/masnesral
This enables a check that which a class which only inherits from immutable classes like str, tuple, and NamedTuple, also defined `__slots__` so they don't allocate memory unnecessarily. This also ensure contributors think about how they define their classes with subclass NamedTuples and str, of which we have many in our codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146276
Approved by: https://github.com/aorenste
I cannot repro this. But this line shows up in internal logs, and I want
to know what the exception is and the context inside it. All of the
exceptions_allowed_to_be_fallback are dataclasses, so they should print
nicely.
Test Plan:
- code reading
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146357
Approved by: https://github.com/williamwen42
See the comment [here](https://github.com/pytorch/pytorch/issues/132014#issuecomment-2379547400) (cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @XilunWu @rec) - this PR updates `_unsafe_set_version_counter` to accept a list of tensors, for overhead-sensitive users (e.g. distributed) who need to hide VC bumps from autograd on a large list of tensors without wanting to suffer the overhead of going from python->C++ separately for every tensor in the list.
I left the binding in pybind, and used a `std::vector`. if we **really** need to optimize overhead even further, we could write a manual cpython binding.
I use this updated API in the next PR to fix FSDP2, so that it properly hides the VC of all `all_gather_buffer` tensors in its call to `split_with_sizes_copy.out(all_gather_buffers)`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137921
Approved by: https://github.com/awgu, https://github.com/albanD
Fixes https://github.com/pytorch/pytorch/issues/144907
```
class Foo(torch.nn.Module):
def forward(self, val):
return torch.full((80, 2), val, dtype=torch.float32)
export(Foo(), args=(torch.tensor(1),))
```
When we have a `torch.full` call like above, where the fill value is a scalar Tensor and not a scalar value, the FX graph from `_dynamo.export()` contains a single node: the full op. We run into a `PendingUnbackedSymbolNotFound` error, because the `item()` call is implicit; the UnbackedSymInt is extracted but goes directly into the data of the output tensor value, and we're then unable to locate it when we try to compute unbacked bindings.
On the other hand, non-strict export doesn't face this, because an explicit `item()`, or `local_scalar_dense` node is inserted, and the unbacked binding is directly the example value of that node.
This adds a dynamo handler to imitate what happens in non-strict.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144999
Approved by: https://github.com/angelayi