Somehow the torch._dynamo.is_compiling is changed to torch.compiler.is_compiling(), which also checks whether we're exporting. This is not caught by cI because we don't have an export test for scan.
Changing to torch.compiler.is_dynamo_compiling and added a test.
edit: piggyback the re-tracing support in this PR. Related code in combine_fn_is_normalized.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149903
Approved by: https://github.com/zou3519
Fixes#139167
This PR:
* uses `named_buffers` to mark static
* Checks that `named_buffers` is of expected type (callable, iterator) before trying to iterate over; if not, we skip this pass
These changes fix the previous errors in dynamo causing to crash (as shown in issue above)
### Unit Test
```
python test/dynamo/test_buffers_override.py
```
Results in:
```
.
----------------------------------------------------------------------
Ran 2 tests in 5.344s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149882
Approved by: https://github.com/anijain2305
We weren't handling `setattr(tensor_obj, "real", 42)` correctly, because
the attribute is a `GetSetDescriptorType` that has special setter logic.
See added test and comments for more explanations.
This patch makes it so that we graph break in those cases, rather than
resulting in silent incorrectness.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149791
Approved by: https://github.com/mlazos
ghstack dependencies: #149481
The "PendingUnbackedSymbolNotFound" error is when an unbacked symbol is created within a piece of code, but this symbol never appears in any of the outputs. I believe the original intention is to help catch incorrectly written meta kernels, where users might've unintentionally created an unbacked symbol but never used it anywhere, but in our case this is intentional. An example is the following test case:
```python
def test_pending_unbacked(self):
class M(torch.nn.Module):
@mark_compile_region
def gn(self, x):
u = x[0].item()
return x * u
def forward(self, x):
for _ in range(4):
x = self.gn(x)
return x
torch._dynamo.config.capture_scalar_outputs = True
torch.compile(M())(torch.randn(8))
```
This fails with the error:
```
torch._dynamo.exc.InternalTorchDynamoError: PendingUnbackedSymbolNotFound: Pending unbacked symbols {zuf1} not in returned outputs (FakeTensor(..., size=(8,)),) .
```
In this case, creating the unbacked symbol is intentional, so we can bypass this using `fake_mode.shape_env.ignore_fresh_unbakced_symbols()`.
Differential Revision: [D71298926](https://our.internmc.facebook.com/intern/diff/D71298926)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149297
Approved by: https://github.com/zou3519
ghstack dependencies: #149296
This patch updates existing `test_return_..._subclass` tests in
`test/dynamo/test_subclasses.py`, so that they end up invoking the
`__torch_function__` method of the newly constructed tensor subclass
instnaces.
This exposes a bug in `TensorVariable.method_as_subclass`, where it
forgot to grab the `__func__` out of `__torch_function__`, which led to
the an error down the line.
This patch fixes `TensorVariable.method_as_subclass` by centralizing how
we extract and wrap torch function, in `build_torch_function_fn`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149481
Approved by: https://github.com/jansel
PR does following
* Turns `inference_mode` to False and `no_grad` for `convert_frame`, if the inference_mode is on globally.
* Turns off inference_mode for fake tensor prop. This ensures that converting from real inference tensor to a fake tensor removes the inference-ness.
* Graph breaks on is_inference and is_inference_mode_enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149321
Approved by: https://github.com/jansel, https://github.com/zou3519
This allows for each device type to check current devices for Triton compatibility and ensure their Triton backend is present.
This PR replaces the `has_triton()` global method which was previously used for this task, and moves the initial check for each Inductor backend on to their associated `BaseScheduler` subclass. This means that other backends, such as Halide, can also implement their own availability checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139171
Approved by: https://github.com/jansel
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
Recently I've been experimenting with introducing new APIs to delay compile as a way to reduce compile times while improving the ergonomics of using dynamic shapes. The high level idea is to run the first invocation of compile in eager, save the example inputs, and on the second invocation we can derive the dynamism in the inputs so that we don't need to waste our time doing a compile with static shapes (which is the status quo today with automatic dynamic).
Another benefit of this is most users no longer need to annotate their inputs with mark_dynamic and mark_unbaked calls since we can derive the dynamism on the very first call. Additionally we get dynamic ints out of the box in this new regime.
This PR implements this idea through the set_stance APIs. In particular it introduces a new `eager_then_compile` stance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147983
Approved by: https://github.com/williamwen42
We've root caused this to correctly throwing attribute error on ScriptFunction
when missing attributes are caused. This PR will fix crashes that are showing
up. I'm going to stack a second PR to fix torch._c.ScriptFunction just being a
very badly behaving python object (which should also fix this
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147894
Approved by: https://github.com/jansel
This PR introduces the ability to whitelist sources as dynamic. This is particularly useful for large models with graph breaks, as you can keep the dynamism across graph breaks since source names stay consistent. Additionally you can use this to mark ints as dynamic.
NB: I intentionally didn't complicate the interface by supporting specification of per dimension dynamism. There is virtue in keeping true to the standard way of representing sources (eg. L['x']). If we find in practice that we need more more fine grained control, we can explore further affordances at that time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147979
Approved by: https://github.com/Mingming-Ding
Earlier, with inline flag we were lifting id-guarded tensors to the inputs to the Fx graph. But this offers no benefit. Main idea behind lifting parameters as inputs was to reuse the compilation units across many instances of the nn-module. However, if we are guarding on the `id`, we are explicitly specializing the compiled artifact to the parameter.
This PR installs the parameters back into the graph. The benefit is removal of all pre-graph bytecode to extract the id-guarded tensors from locals/globals. This increases speedup from 1.67x to 1.75x for an internal model that has large number of optimizer parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147824
Approved by: https://github.com/jansel
Co-authored-by: Jason Ansel <jansel@meta.com>