Commit Graph

25 Commits

Author SHA1 Message Date
Raymond Li
21c2565f35 Document dynamo (#146736)
Many files in dynamo are currently lacking file/module-level documentation, which makes it hard to know what they do at a glance and without digging into the code. This fixes that.

Note: documentation was AI-generated and could be incorrect, please review carefully.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146736
Approved by: https://github.com/jansel, https://github.com/StrongerXi, https://github.com/anijain2305, https://github.com/zou3519
2025-02-13 00:02:21 +00:00
Shangdi Yu
72e8f34715 [AoTI Minifier] UX Improvement (#143330)
Summary:
- When a user specify `TORCHINDUCTOR_MAX_AUTOTUNE=1` env variable, we add `config.max_autotune=True` to the generated minifier_launcher
- We should do this to other inductor configs as well in a followup Diff

Currently in dynamo and aoti minifier, if a config is overwritten by an env variable, the config will not show up in the config list in the minifier_launcher.py file. As a result, when running the minifier_launcher, they need to re-apply the same env variable.
 This is:
1) not convenient for the users
2) if they copy-paste the minifier_launcher.py to us without including the env variable, we could be confused and not able to reproduce the error.

Underlying implementation change:

- Add `env_default` parameter to `codegen_config()`. If set, configs overriden by the env are not considered default.

Test Plan:
```
 buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:utils -- -r test_codegen_config
```

Differential Revision: D67299312

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143330
Approved by: https://github.com/jansel, https://github.com/eellison
2025-01-07 20:04:19 +00:00
Tom Ritchford
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
PyTorch MergeBot
5c97ac9721 Revert "Remove unused Python variables in torch/[_-a]* (#133492)"
This reverts commit fda975a7b3.

Reverted https://github.com/pytorch/pytorch/pull/133492 on behalf of https://github.com/clee2000 due to Sorry, I need to revert this in order to revert something else.  The only thing you need to do is rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/133492#issuecomment-2536635516))
2024-12-11 17:29:12 +00:00
Tom Ritchford
fda975a7b3 Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-10 21:48:44 +00:00
Aaron Gokaslan
31715be72a [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-16 19:44:11 +00:00
PyTorch MergeBot
3117f2cf67 Revert "[BE]: Update mypy to 1.11.2 (#133816)"
This reverts commit 55299cfc22.

Reverted https://github.com/pytorch/pytorch/pull/133816 on behalf of https://github.com/jeanschmidt due to seems to have broken https://github.com/pytorch/pytorch/actions/runs/10865710499/job/30155699792 on main ([comment](https://github.com/pytorch/pytorch/pull/133816#issuecomment-2352377684))
2024-09-16 09:11:16 +00:00
Aaron Gokaslan
55299cfc22 [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-14 21:40:36 +00:00
Oguz Ulgen
6e79932543 Add basic mypy annotations to dynamo (#132415)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132415
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
2024-08-04 18:43:36 +00:00
PyTorch MergeBot
3558a8cf4a Revert "Add basic mypy annotations to dynamo (#132415)"
This reverts commit 71e22e0959.

Reverted https://github.com/pytorch/pytorch/pull/132415 on behalf of https://github.com/ZainRizvi due to Sorry, this PR has entered a weird state in the diff train. Trying to revert it to skip it, and then we can try relanding it ([comment](https://github.com/pytorch/pytorch/pull/132415#issuecomment-2267631785))
2024-08-04 18:39:29 +00:00
Oguz Ulgen
71e22e0959 Add basic mypy annotations to dynamo (#132415)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132415
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
2024-08-01 20:14:25 +00:00
Xuehai Pan
e74ba1b34a [BE][Easy][15/19] enforce style for empty lines in import segments in torch/_d*/ (#129767)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129767
Approved by: https://github.com/anijain2305
2024-07-31 21:18:11 +00:00
Yu, Guangye
45e6a364ee Avoid autocast deprecation warning (#132207)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132207
Approved by: https://github.com/awgu
2024-07-31 13:13:39 +00:00
Xuehai Pan
4d7bf72d93 [BE][Easy] fix ruff rule needless-bool (SIM103) (#130206)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130206
Approved by: https://github.com/malfet
2024-07-14 08:17:52 +00:00
Aaron Orenstein
dcfa7702c3 Flip default value for mypy disallow_untyped_defs [1/11] (#127838)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127838
Approved by: https://github.com/oulgen
2024-06-08 18:16:33 +00:00
weiyusheng
c3949b20a1 Opt model save and load (#126374)
## save&load support for OptimizedModule

[Issue Description](https://github.com/pytorch/pytorch/pull/101651)

English is not my native language; please excuse typing errors.

This pr is based on commit b9588101c4d3411b107fdc860acfa8a72c642f91\
I'll do something with the merge conflicts later

### test result for test/dynamo

Conclusion:\
It performs the same as before as far as I can see.

ENV(CPU only):\
platform linux -- Python 3.10.14, pytest-7.3.2, pluggy-1.5.0\
configfile: pytest.ini\
plugins: anyio-3.7.1, cpp-2.3.0, flakefinder-1.1.0, xdist-3.3.1, xdoctest-1.1.0, metadata-3.1.1, html-4.1.1, hypothesis-5.35.1, rerunfailures-14.0

#### before this pr:

[before](https://github.com/pytorch/pytorch/files/15329370/before.md)

#### after this pr:

[after](https://github.com/pytorch/pytorch/files/15329376/after.md)

### some changes

1. add test_save_and_load to test/dynamo/test_modules.py with & without "backend='inductor'"
2. add \_\_reduce\_\_ function to OptimizedModule and derived classes of _TorchDynamoContext for pickling & unpickling
3. change the wrappers into wrapper classes ( including convert_frame_assert, convert_frame, catch_errors_wrapper in torch/_dynamo/convert_frame.py & wrap_backend_debug in torch/_dynamo/repro/after_dynamo.py )
4. change self.output.compiler_fn into innermost_fn(self.output.compiler_fn) in torch/_dynamo/symbolic_convert.py to get the origin compiler_fn and to avoid the "compiler_fn is not eager" condition

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126374
Approved by: https://github.com/msaroufim, https://github.com/jansel
2024-06-05 13:01:16 +00:00
Peter Bell
8865425ff7 [minifier] Add config flag to ignore non-fp values (#123006)
When minifying, the after-aot minifier ignores non-floating values by
default but does check them when running the the initial graph dump step.
This means we may capture a graph that doesn't fail the tester and doesn't have
any meaningful divergence.

For example, the derivative of `elu(x)` depends on `x > 0` so this value is
saved for backwards and so becomes a graph output. However, the difference
between `FLT_MIN` and `0` in `x` is now enough to trigger an accuracy failure.

I fix this by adding a config variable and environment variable to ignore these
non floating point values.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123006
Approved by: https://github.com/ezyang
ghstack dependencies: #123005
2024-04-09 03:34:09 +00:00
willfengg
8010f6bf48 [dynamo][inductor] Provide public API to get compiler options/configs (#105026)
issues resolved: https://github.com/pytorch/pytorch/issues/101832

**context**: get torch.compile config for further usage. E.g, the training platform wants to get if model is compiled with cudagraph enabled and trigger further action

**how it is implemented**
   * the core logic is backend.get_compiler_config() in torch/_dynamo/eval_frame.py
   * for backend='inductor' / _TorchCompileInductorWrapper, we have inductor-specific implementation in get_compiler_config in torch/_inductor/compile_fx.py and torch/__init__.py

**how to use it**: Below is an example.

```
model = DummyModule()
optimized_module = torch.compile(
    model, options={"triton.cudagraphs": True}
)
compiler_config = optimized_module.get_compiler_config()

if compiler_config["triton.cudagraphs"]:
   pass
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105026
Approved by: https://github.com/yanboliang, https://github.com/jansel
2023-07-18 06:12:06 +00:00
Edward Z. Yang
7112880cc1 Preserve leaf-ness and requires_grad-ness in minified repros (#102899)
Also some minor refactoring

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102899
Approved by: https://github.com/albanD
2023-06-05 19:56:00 +00:00
Edward Z. Yang
96487d0d1f Refactor after_dynamo to have a CLI interface too. (#101220)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101220
Approved by: https://github.com/anijain2305
2023-05-14 19:03:16 +00:00
Edward Z. Yang
0a479d9b9c Simplify minifier testing by incorporating fault injection in prod code (#100357)
Previously, minifier testing injected faults by injecting extra code
into the repro scripts, and then ensuring this code got propagated to
all subsequent subprocess calls.  This was not only quite complicated,
but also induced a big slowdown on the minifier, because to inject the
faults, you had to import torch._inductor, which would cause the
compilation threads to immediately get initialized before you even got
to do anything else in the repro script.

This new approach fixes this problem by incorporating the fault
injection into "prod" code.  Essentially, for inductor fault injection
we introduce some new config flags that let you "configure" Inductor to
be buggy; for Dynamo fault injection we just permanently keep the buggy
testing backends registered.  This is MUCH simpler: we only have to
propagate the buggy config (which is something we're already doing),
and it saves the minifier scripts from having to immediately initialize
inductor on entry.

Also, I enable the test for Triton runtime errors, now that tl.assert_device is here.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100357
Approved by: https://github.com/voznesenskym
2023-05-02 11:44:06 +00:00
Jason Ansel
884c5c86f1 Pass torch.compile mode/options to all backends (#99645)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99645
Approved by: https://github.com/anijain2305
2023-04-27 19:41:26 +00:00
Animesh Jain
5f138a6b65 [minifier][after dynamo] clone inputs while retaining gradness (#100066)
Helps with minifying one failure in https://github.com/pytorch/pytorch/issues/98561

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100066
Approved by: https://github.com/ezyang
2023-04-26 21:31:18 +00:00
Edward Z. Yang
b01edf45f8 Add typing to debug_utils and repro (#99452)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99452
Approved by: https://github.com/anijain2305
2023-04-19 16:00:19 +00:00
Edward Z. Yang
2e25fb5d55 Refactor debug_utils into after_aot and after_dynamo modules (#99450)
There are no code changes but I did take the opportunity to
reorder and group the functions once they were placed in their
respective modules.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99450
Approved by: https://github.com/anijain2305
2023-04-19 16:00:19 +00:00