Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
This PR adds support for list subclasses. Among other things are
1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.
If this PR is hard to review, please let me know. I can break it into several small PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.
Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.
Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)
dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)
Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430
This PR moves the logic for computing the overlapping relations between input tensors that
share a storage instance to C++.
In summary, this PR:
- Moves both `tensors_definitely_do_not_overlap` and part of `compute_overlapping_tensors`
to C++
- Introduces a `check_overlapping` function that re-runs `compute_overlapping_tensors`,
checking that the result is consistent with what is expected
- Introduces the `StorageOverlapChecker` class
- Keeps track of overlapping and non-overlapping tensors
- Actually checks the overlapping relation (call `check_overlapping`) when all tensors
are collected
- Introduces the `STORAGE_OVERLAPPING` relational guard
- Has a reference to a `StorageOverlapChecker`
- Stores the to-be-checked tensors in the checker, and triggers its check
- Introduces `install_storage_overlapping_guard` python function
- Creates an instance of `StorageOverlapChecker`
- Creates 2 instances of the `STORAGE_OVERLAPPING` guard (for overlapping and
non-overlapping tensors), referencing the same `StorageOverlapChecker` instance
**Why is `StorageOverlapChecker` needed?**
The way `GuardManager` is implemented, we have no control over the order in which the
check methods are called, i.e. no control over the order the tensors are collected. So, we
can't easily split them in "overlapping" and non-overlapping kinds.
Instead, we create 2 instances of `STORAGE_OVERLAPPING` guard, each of which helps
collecting the tensors for one of the kinds mentioned above. They are then used in a
single `StorageOverlapChecker` instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140013
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139554, #139555
Fix: #118214
This PR replaces the guards introduced by running `_tensors_definitely_do_not_overlap` at
compile-time by a single `___check_overlapping` guard. When evaluated, this function calls
the original `_tensors_definitely_do_not_overlap` so as to check whether the current state
of the inputs are consistent, i.e. tensors that should overlap do overlap, and those that
shouldn't don't.
In summary, the changes are:
- Introduce `StorageOverlap` derived class from `GuardEnvExpr`
- Plumb `AOTConfig` to the `compute_overlapping_inputs` function, so as to have access to
AOTAutograd input sources
- Suppress the guards generated by `_tensors_definitely_do_not_overlap` function at runtime
- Issue a `StorageOverlap` AOTAutograd guard, specifying the sources that should and
shouldn't overlap
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139555
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139554