Relanding #148590 due to merge conflict.
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Squashed contents:
* [ptd][nccl] use current-stream as nccl-stream under async=False mode (#147820)
PTD current workflow:
- PTD creates its own dedicated `ncclStream` for comm operation
- it will first add a dependency on current-stream (typically the compute stream) to ensure tensors are ready before invoking collective
such stream synchronization become expensive in Inference world (cpu overhead: 70us vs GPU kernel time: 160us).
This diff:
- async=False [default], will use current-stream as nccl-stream and avoid the stream-sync overhead
- async=True, will retain existing logic: create new nccl-stream, let it wait on current-stream to ensure tensors are ready
- pass down async from c10d down to NCCL-PG
this helps shave off 50% CPU overhead **(70us -> 35us)**, which reduce total CPU/GPU from **230us to 195us by 15%**
* [PGNCCL] Make avoid-record-stream default
* [c10d] Add asyncOp argument to Ops
* Change python side wait
* Pass asyncOp at ProcessGroup level
* Watchdog unstashing tensors as a safety net
* Stash tensors for reduce_scatter_v and all_gather_v
Pull Request approved: https://github.com/pytorch/pytorch/pull/149753
* [c10d] Move unstashing from watchdog to main thread
Pull Request approved: https://github.com/pytorch/pytorch/pull/150079
* [PGNCCL][BE] Merge mutex into TensorShelf for encapsulation
Pull Request approved: https://github.com/pytorch/pytorch/pull/150130
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150398
Approved by: https://github.com/atalman
Summary:
Oftentimes, users complain that a bunch of extra events are prepended to their desired GPU snapshot. This is because they usually attach an OOM logger without knowing and when they go to collect the actual snapshot, it adds all the OOM logger contents. Since OOM and regular snapshot use the same backend, we currently don't have the infra in place to split these snapshots.
As a solution we add a flag to the snapshot frontend to clear out the history when starting the auto-trace record memory history.
A more thorough solution would be to have a user pass in a handle and to have snapshots per handle to seperate the events. However, this would likely be complicated and more work than it is worth as we would have to change the callbacks in the caching allocator and pass these objects between python and cpp.
Test Plan:
See diff below
Differential Revision: D71159720
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149352
Approved by: https://github.com/eqy, https://github.com/aaronenyeshi
This is a new version of https://github.com/pytorch/pytorch/pull/148561 fixing the ROCM test failure
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Probably lots of features of the triton C++ generated code that I haven't handled yet.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149238
Approved by: https://github.com/oulgen
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete, will do in separate diff:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z. With https://github.com/pytorch/pytorch/pull/147583, we should be able to handle all of the grid logic directly in _StaticCudaLauncher.launch_kernel, and get rid of the python evaluation.
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Hooking it up with a config to inductor
- Testing harness to test against torch generated triton kernels
Differential Revision: [D69926783](https://our.internmc.facebook.com/intern/diff/D69926783/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148561
Approved by: https://github.com/aorenste, https://github.com/syed-ahmed
Summary:
**Codegen**
- Skip some codegen parts for torchbind (such as arg decleration) because they are loaded in proxy executor, so we do not need to declare torchbind args in cpp code
- Added a helper method to get the schema of CallTorchBind HOP. The returned schema is only the schema of `obj.method()`.
**Serialization**
Add support for torchbind object in serialization
- For CallTorchBind HOP, we need to handle it specially because of it's schema. The output serialized args is in the format of `(obj, method, *args, **kwargs)`.
- it.TorchBindObject inputs are serialized to `as_custom_obj` Argument.
**Packaging**
Add torchbind objects file and `custom_objs_config.json` file to generated files output of `aot_compile`.
The json file is stored in the `data/aotinductor/<model_name>` folder in pt2 archive.
The torchbind objects are stored in data/constants/ folder in pt2 archive.
The format of torchbind objects are `f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}"`. e.g. `custom_obj_0`.
CustomClassHolder objects implement their own pickle methods.
Note that this `custom_objs_config.json` file is different from the `model_constants_config.json` file produced in package_sigmoid(). The keys in `custom_objs_config` directly correspond to the arg name in extern nodes json.
The key in `model_constants_config.json` produced by `package_sigmoid` is the attribute name in the user mode code.
This is required for both internal and OSS torchbind support.
For OSS torchbind support, we also need to package torchbind_constants into the .pt2 output.
**Work Left**
We still need to add torchbind support in ProxyExecutor for inductor.aoti_load_package to work. See other diffs in the stack.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r schema
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile
```
Differential Revision: D69490718
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148506
Approved by: https://github.com/angelayi
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70937982](https://our.internmc.facebook.com/intern/diff/D70937982)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70835197](https://our.internmc.facebook.com/intern/diff/D70835197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Cc: @ngimel @awgu @Aidyn-A @skyw @wconstab @leonardo0lyj
Differential Revision: [D70835197](https://our.internmc.facebook.com/intern/diff/D70835197)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148590
Approved by: https://github.com/eqy, https://github.com/Aidyn-A, https://github.com/fduwjj
This adds `abort` and `shutdown` to `Backend` and `ProcessGroup` objects. This simplifies the logic in `distributed_c10d.py` by having a default noop implementation for all PGs.
This will be useful for torchft and upcoming versions of NCCL which will handle abort correctly. Currently `torchft` would have to call internal methods `_abort` on the PGNCCL object directly but with this change we can now just call `.abort()` and have it work for any PG implementation.
Test plan:
```
pytest distributed/test_backends.py distributed/test_c10d_common.py distributed/test_c10d_pypg.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148798
Approved by: https://github.com/kwen2501
This PR adds support for non-functional collectives under `FakeTensorMode` and `fake_pg`. It helps eliminate the patching of collectives for memory and runtime estimation.
It also modifies the `ModTracker` to enable the post-backward hook call for modules whose inputs don't require gradients but parameters do.
For the memory tracking, we now enable tracking DTensor dispatcher for custom dispatch functions like `entropy_loss`.
Dispatcher is only enabled for the memory tracking part and disabled as soon as it is done.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147566
Approved by: https://github.com/weifengpy
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Currently, recorded profiler events for aten ops do not store overload names. It would be useful to know which overloads are actually called to analyse performance.
For example, consider the following dispatch trace which occurs if there is a fallthrough kernel registered for aten::add:
```
[call] op=[aten::add.Tensor], key=[AutogradCPU]
[redispatch] op=[aten::add.Tensor], key=[Undefined]
[call] op=[aten::empty.memory_format], key=[BackendSelect]
[redispatch] op=[aten::empty.memory_format], key=[CPU]
[call] op=[aten::add.out], key=[CPU]
```
In this case, aten::add.out is a child of aten::add.Tensor, however the current profiler trace provides no way to differentiate aten op calls.
See the added unit test for a more detailed example.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143114
Approved by: https://github.com/sraikund16
1. My company is using privateuseone to connect new hardware device and requires the use of `batch_isend_irecv` function. However, `batch_isend_irecv` is currently only open to CUDA, so I add `supports_coalescing` property in `c10d::Backend` to determine whether backend supports coalescing.
2. If `pg._has_hooks` return True, We don't need to determine if the current device is CUDA. So privateuseone can also support `pg._wait_for_pending_works`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135338
Approved by: https://github.com/kwen2501, https://github.com/albanD
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Resubmission of #144974 which was reverted for unrelated reasons.
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147966
Approved by: https://github.com/danthe3rd
Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144974
Approved by: https://github.com/eqy, https://github.com/albanD
This PR and the previous:
- Moves parts of `eval_frame.c` to C++.
- Reduces code duplication in `dynamo__custom_eval_frame` and makes the control flow more clear.
- Enables `convert_frame` to signal to `eval_frame.cpp` in a general manner how to evaluate this frame, recursive frames, and future frames with the same code object (default/compile, skip, run-only). e.g. this will allow us to change skipping/cache limit hit eval_frame behavior directly from convert_frame without requiring changes to C/C++.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146355
Approved by: https://github.com/jansel
ghstack dependencies: #145603
# Motivation
Add context variable `torch.bachend.mkldnn.allow_tf32` to control tf32 computation in convolution kernels at XPU side. The tf32 data type is beneficial to improve the performance of deep learning workloads during training/inference. Current PR uses the [oneDNN API fpmath_mode](https://oneapi-src.github.io/oneDNN/dev_guide_attributes_fpmath_mode.html#the-floating-point-math-mode-attribute) to trigger the tf32 acceleration in convolution kernels.
# Valiadation
* ut to test context variable
`python test/xpu/test_conv.py -k test_mkldnn_allow_tf32_get_set`
* Runtime exemplification
```
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_f32::blocked:abcd::f0 wei_f32::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_f32::blocked:abcd::f0,attr-scratchpad:user attr-fpmath:tf32,alg:convolution_direct,mb20_ic16oc33_ih50oh24kh3sh2dh0ph0_iw100ow49kw3sw2dw0pw0,0.649902
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_f32::blocked:abcd::f0 wei_f32::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_f32::blocked:abcd::f0,attr-scratchpad:user attr-fpmath:tf32,alg:convolution_direct,mb20_ic33oc33_ih24oh24kh3sh1dh0ph1_iw49ow49kw3sw1dw0pw1,0.151855
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,backward_data,src_f32::blocked:abcd::f0 wei_f32::blocked:abcd::f0 bia_undef::undef::: dst_f32::blocked:abcd::f0,attr-scratchpad:user attr-fpmath:tf32,alg:convolution_direct,mb20_ic33oc33_ih24oh24kh3sh1dh0ph1_iw49ow49kw3sw1dw0pw1,0.167969
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,backward_weights,src_f32::blocked:abcd::f0 wei_f32::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_f32::blocked:abcd::f0,attr-scratchpad:user attr-fpmath:tf32,alg:convolution_direct,mb20_ic33oc33_ih24oh24kh3sh1dh0ph1_iw49ow49kw3sw1dw0pw1,0.26709
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,backward_weights,src_f32::blocked:abcd::f0 wei_f32::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_f32::blocked:abcd::f0,attr-scratchpad:user attr-fpmath:tf32,alg:convolution_direct,mb20_ic16oc33_ih50oh24kh3sh2dh0ph0_iw100ow49kw3sw2dw0pw0,0.219971
```
According to the field `fpmath:tf32` in verbose, we could see that, current context setting utils could successfully trigger tf32 computation in conv forward/backward_data/backward_weights kernels.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137570
Approved by: https://github.com/guangyey, https://github.com/EikanWang, https://github.com/atalman, https://github.com/malfet
Co-authored-by: Yu, Guangye <guangye.yu@intel.com>