Commit Graph

3123 Commits

Author SHA1 Message Date
Svetlana Karslioglu
807a7dbf9f Don't generate modindex (#141601)
Fixes https://github.com/pytorch/pytorch/issues/141591
The generated index looks ugly. Attempting to not generate it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141601
Approved by: https://github.com/malfet, https://github.com/albanD
2024-11-27 02:07:21 +00:00
bhack
1df440dc4e Add truediv support in export serializer (#136364)
Fixes #136113

- [x] Inital `truediv` coverage
- [ ] Expand/reduce coverage?
- [x] Add tests
- [x] Re-check docstrings
- [ ] Linting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136364
Approved by: https://github.com/pianpwk

Co-authored-by: Angela Yi <angelayi@meta.com>
Co-authored-by: Pian Pawakapan <pianpwk@meta.com>
2024-11-27 00:31:47 +00:00
Mark Saroufim
f3d16ec76f Add doc preview command (#141590)
Convenience, when we build pytorch docs
1. Docs for build weren't clear that `make html` is the main command intended to be ran
2. Once you run `make html` you need to visualize the work, opening up a simple http server seems like the simplest solution so adding a `make serve command`

Usage

```shell
numpy ❯ make serve PORT=8080 # Add port optionally
Serving HTTP on :: port 8080 (http://[::]:8080/) ...
::1 - - [26/Nov/2024 10:05:41] "GET / HTTP/1.1" 200 -
::1 - - [26/Nov/2024 10:05:41] "GET /_static/copybutton.css HTTP/1.1" 200 -
::1 - - [26/Nov/2024 10:05:41] "GET /_static/katex-math.css HTTP/1.1" 200 -
```

![Screenshot 2024-11-26 at 10 05 46 AM](https://github.com/user-attachments/assets/3b275c33-1515-4e21-b540-f5a68c8a8e55)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141590
Approved by: https://github.com/svekars, https://github.com/malfet
2024-11-26 21:56:54 +00:00
Nichols A. Romero
a99332eb25 [ROCM] Support Multi-GPU offline tuning in TunableOp (#139673)
This PR enhances offline tuning to support multi-GPUs.

High-level description of algorithm:
- Duplicate GEMMs are first eliminated
- GEMMs are distributed to multi-GPUs for tuning
- Results are gathered into a file with `_full` in the filename

Also adding support for GemmAndBias and ScaledGemm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139673
Approved by: https://github.com/jeffdaily, https://github.com/hongxiayang
2024-11-26 19:07:41 +00:00
Stephen Matthews
2bbd984aa2 Fix typo in Reproducibility docs (#141341)
Fixes trivial issue in the docs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141341
Approved by: https://github.com/svekars
2024-11-26 16:53:26 +00:00
ZhiweiYan-96
c418a9ac75 [Intel GPU] XPUInductorQuantizer for XPU int8 recipe customization (#139578)
# Motivation
This PR add `XPUInductorQuantizer`, which would defined the recipe of int8 quantization at XPU backend.

# Detailed
The `XPUInductorQuantizer` is class derived from `X86InductorQuantizer` as both quantizer would take the advantage of highly optimized operators in oneDNN library(qconv, qlinear, qconv/qlinear fusion).

We share the same recipe as `X86InductorQuantizer`, so we would have same `annotate_xxxx` methods.  So, in ideal situation, the `XPUInductorQuantizer` would have no class body as all implementation can inherit from base class.

In this PR, we override the `annotate_xxx` method for operators that has NOT be implemented. All operators XPU backend does  not implement would be fallbacked to fp32 implementation as the node in graph is a `dq-op-q` pairs. This would help provide good OOB usability for XPU backend.   On the other hand, the implemented operators would uses `annotate_op` implemented in base class and could be lowered successfully.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139578
Approved by: https://github.com/EikanWang, https://github.com/leslie-fang-intel, https://github.com/CuiYifeng, https://github.com/jerryzh168
ghstack dependencies: #133080
2024-11-26 09:44:14 +00:00
Svetlana Karslioglu
25c0b91dbb [Docs] Make links to source link to source (#141186)
Rewrite [SOURCE] links in the API docs to point to the source file in github repo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141186
Approved by: https://github.com/malfet, https://github.com/msaroufim

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-11-22 00:50:19 +00:00
angelayi
878a849c92 [aoti] Remove example inputs from aoti_compile_and_package (#140991)
Differential Revision: [D66136724](https://our.internmc.facebook.com/intern/diff/D66136724)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140991
Approved by: https://github.com/yushangdi, https://github.com/desertfire
ghstack dependencies: #140990
2024-11-20 02:49:47 +00:00
YangQuan
93aef684d9 fix typo in torch.compiler_dynamo_deepdive.rst (#140871)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140871
Approved by: https://github.com/zou3519
2024-11-19 14:42:36 +00:00
Yu Guo
808da50c2d create a new torch.cuda.device_memory_used api (#140870)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.
see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65960134

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140870
Approved by: https://github.com/ngimel, https://github.com/eqy
2024-11-19 06:36:30 +00:00
Tristan Rice
2673a440d0 [distributed] add PG APIs and general doc cleanups (#140853)
Doc updates:

* This adds documentation for the object oriented ProcessGroup APIs that are being used in torchft as well as https://github.com/pytorch/rfcs/pull/71 .
* It also does some general cleanups to simplify the distributed.rst by using `:methods`.
* It adds `__init__` definitions for the Stores
* I've reordered things so the collective APIs are before the Store/PG apis

Test plan:

```
lintrunner -a
cd docs && sphinx-autobuild source build/ -j auto -WT --keep-going
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140853
Approved by: https://github.com/kwen2501
2024-11-19 02:06:32 +00:00
PyTorch MergeBot
43de32d948 Revert "create a new torch.cuda.device_memory_used api (#140870)"
This reverts commit 478204cad6.

Reverted https://github.com/pytorch/pytorch/pull/140870 on behalf of https://github.com/yuguo68 due to the test is still flaky on ROCm, test_cuda.py::TestCudaMallocAsync is not skipped with the unittest.skipIf(TEST_CUDAMALLOCASYNC ([comment](https://github.com/pytorch/pytorch/pull/140870#issuecomment-2484161914))
2024-11-18 21:26:25 +00:00
Yuanhao Ji
4bb1bf0573 [Docs] Remove duplicate declaration of double_tensor (#140927)
Fixes #140920

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140927
Approved by: https://github.com/malfet
2024-11-18 21:22:30 +00:00
Yu Guo
478204cad6 create a new torch.cuda.device_memory_used api (#140870)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.
see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65960134

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140870
Approved by: https://github.com/ngimel
2024-11-18 19:13:43 +00:00
PyTorch MergeBot
03b7ec9237 Revert "create a new torch.cuda.memory_usage_in_bytes api (#140719)"
This reverts commit 9febc47637.

Reverted https://github.com/pytorch/pytorch/pull/140719 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but the test is flaky on ROCm ([comment](https://github.com/pytorch/pytorch/pull/140719#issuecomment-2479832082))
2024-11-15 20:05:32 +00:00
Laith Sakka
500ce29e4c Use has_free_unbacked_symbols instead of bool(free_unbacked_symbols) (#140027)
with 20K features saves 20 seconds.
257.021589517593-> 237.8304626941681
buck2 run @fbcode//mode/opt fbcode//torchrec/distributed/tests:pt2_compile_benchmark -- --num-features=2000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140027
Approved by: https://github.com/ezyang
2024-11-15 19:01:06 +00:00
Yu Guo
9febc47637 create a new torch.cuda.memory_usage_in_bytes api (#140719)
Summary:
the current torch.cuda.memory_usage returns the memory utilization, more specifically, percent of time over the past sample period global memory being read/written for Nvidia.

see more details in https://github.com/pytorch/pytorch/issues/140638

Test Plan: added a new unittest

Differential Revision: D65928031

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140719
Approved by: https://github.com/xw285cornell, https://github.com/hongxiayang
2024-11-15 05:59:40 +00:00
Vincent Moens
03cccaa76a Doc: Rewrite the storage.rst file to emphasize untyped storages (#140145)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140145
Approved by: https://github.com/janeyx99
2024-11-13 17:40:16 +00:00
Tongzhou Wang
7b0d199471 [doc] fix grammar in "Extending Torch" (#140209)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140209
Approved by: https://github.com/soulitzer
2024-11-13 05:34:43 +00:00
Tongzhou Wang
4c6eebf4e2 [doc] improve code in fake tensor doc (#140329)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140329
Approved by: https://github.com/soulitzer
2024-11-13 05:14:56 +00:00
William Wen
be172d2a60 [pt2, docs] Add new PT2 troubleshooting doc (#138620)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138620
Approved by: https://github.com/ezyang

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-11-09 01:17:39 +00:00
Bin Bao
63a0d6587e [AOTI] Update the OSS tutorial (#139956)
Summary: Update the OSS tutorial to use the new aoti_compile_and_package and aoti_load_package APIs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139956
Approved by: https://github.com/angelayi
ghstack dependencies: #139955
2024-11-08 20:46:57 +00:00
Jerry Zhang
1fcc99c6bf Update quantization.rst (#139824)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139824
Approved by: https://github.com/svekars
2024-11-08 02:34:50 +00:00
John MacCormick
81d077cca2 Fix to modules.rst: indent line with activation functions (#139667)
At line 205, I believe the code `x = self.activations[act](x)` should be indented so that it is in the body of the for loop. Otherwise, applying the four linear modules has the same effect as applying a single linear module, in the sense that it is still just a linear map so there is no point in having four of them.  In other words, each layer of this network should have a nonlinearity.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139667
Approved by: https://github.com/malfet
2024-11-08 01:12:52 +00:00
Tongzhou Wang
22dd17c7bb [doc] fixing missing colon in custom op doc (#140060)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140060
Approved by: https://github.com/malfet
2024-11-07 23:48:44 +00:00
Mikayla Gawarecki
2ee91db03d Add APIs to separate norm calculation and gradient scaling in nn.utils.clip_grad_norm_ (#139662)
Fixes https://github.com/pytorch/pytorch/issues/139467

Refactor `nn.utils.clip_grad_norm_` into `nn.utils.get_total_norm` and then `nn.utils.clip_grads_with_norm_` . `clip_grad_norm_` now calls into these two new ops,

`get_total_norm` is generalized (rather than `get_grad_norm` due to the discussion on the issue from @awgu)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139662
Approved by: https://github.com/H-Huang
2024-11-07 23:13:23 +00:00
Shangdi Yu
83e36a6bfa AOTI Minifier (#139351)
See documentation at https://docs-preview.pytorch.org/pytorch/pytorch/139351/torch.compiler_aot_inductor_minifier.html.

Add a minifier for AOTI.

Test Plan:
python test/inductor/test_minifier.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139351
Approved by: https://github.com/desertfire
2024-11-07 21:43:44 +00:00
Tom Fogal
b5286ba207 Small fix to Python rendering in documentation. (#138281)
The text was being rendered as normal text but I believe was meant to be code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138281
Approved by: https://github.com/janeyx99
2024-11-07 20:48:47 +00:00
Will Constable
2b400236c2 [DCP] Cross-link DCP doc to tutorials (#139776)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139776
Approved by: https://github.com/mhorowitz, https://github.com/LucasLLC, https://github.com/fduwjj
ghstack dependencies: #139938
2024-11-07 02:19:49 +00:00
Jay Zhang
99deedff57 [ONNX] Describe memory usage of TorchDynamo-based exporter. (#139388)
Add a new documentation to show one memory usage benefit brought by TorchDynamo-based ONNX exporter.

Also add a unit test to make sure TorchDynamo-based ONNX exporter works well under FakeTensorMode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139388
Approved by: https://github.com/xadupre
2024-11-06 17:29:11 +00:00
Tongzhou Wang
faab564bda [doc] Fix grammar in export.ir_spec.rst (#139584)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139584
Approved by: https://github.com/zou3519
2024-11-05 23:26:36 +00:00
Ryan Guo
693a0a1bd4 [dynamo][NFC] Rename mutable_local and add documentation (#139339)
This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`

Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
2024-11-05 19:11:41 +00:00
Henry Tsang
350bc2a166 [export] Add support for symbool to make it usable for torch.cond (#138765)
# Why?

I want the following code to work.

minimal repro:
```
class M(torch.nn.Module):
    def forward(self, dilate_flag):
        return dilate_flag.item()

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()

ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```

error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program

second error will be handled by https://github.com/pytorch/pytorch/pull/138760

# Motivation

I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.

```
class M(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.dilate_flag = 0

    def forward(self, dilate_flag):
        self.dilate_flag = dilate_flag.item()

        def true_fn(dilate_flag):
            return dilate_flag.clone()

        def false_fn(dilate_flag):
            return dilate_flag.clone()

        torch.cond(
            self.dilate_flag,
            true_fn,
            false_fn,
            (dilate_flag,),
        )
        return self.dilate_flag

input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()

for input in inputs:
    expected_output = model(*input)

    ep = torch.export.export(model, input, strict=False)
    path = torch._inductor.aot_compile(ep.module(), input)
    aot_model = torch._export.aot_load(path, device="cuda")
    actual_output = aot_model(*input)

    assert (
        expected_output == actual_output
    ), f"henry they are not equal {expected_output} != {actual_output}"
```

Differential Revision: D64867504

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
2024-11-04 23:31:49 +00:00
Jane Xu
514c466cd9 Redirect the custom ops landing page :D (#139634)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139634
Approved by: https://github.com/zou3519
2024-11-04 22:25:15 +00:00
Will Constable
3d93caf664 [c10d] Add thread-safety initialization warning (#139638)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139638
Approved by: https://github.com/kwen2501, https://github.com/c-p-i-o, https://github.com/XilunWu
2024-11-04 21:38:47 +00:00
Edward Z. Yang
585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00
PyTorch MergeBot
92d7f29e59 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit f6be44c74e.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to more fbcode errors ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452985581))
2024-11-02 13:11:04 +00:00
Edward Z. Yang
f6be44c74e Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-02 11:50:11 +00:00
PyTorch MergeBot
8d1eaa3da6 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit a6630bcf87.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to internal code triggers import cycle ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452833882))
2024-11-02 03:38:15 +00:00
Mikayla Gawarecki
a979318ef7 Add section to serialization note re weights_only (#139433)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139433
Approved by: https://github.com/malfet
ghstack dependencies: #138936, #139221
2024-11-01 21:51:50 +00:00
Edward Z. Yang
a6630bcf87 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-01 21:43:25 +00:00
Mikayla Gawarecki
ea0e09b3f3 Add utility to get all unsafe globals in checkpoint (no pickletools dependency) (#139221)
Fixes https://github.com/pytorch/pytorch/issues/129698

https://github.com/pytorch/pytorch/pull/139106 without pickletools

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139221
Approved by: https://github.com/malfet
ghstack dependencies: #138936
2024-11-01 19:31:39 +00:00
bskrlj
8e27833e30 Ensure SWA boundary conditions w.r.t. definition (#133773)
According to the documentation, decay is a number in [0,1] range,[ i.e.](https://pytorch.org/docs/stable/optim.html)
```
Decay is a parameter between 0 and 1 that controls how fast the averaged parameters are decayed. If not provided to get_ema_multi_avg_fn, the default is 0.999.
```
An inspection of `swa_utils.py`  indicates there are no checks for invalid values of `decay`. Adding asserts as suggested in this PR ensures valid compute range (one way to enforce correct behavior, there are perhaps more suitable ones). Papers `torch` cites for reference idea/implementation also consider exclusively this range (e.g., https://arxiv.org/pdf/2310.04415).

Fixes https://github.com/pytorch/pytorch/issues/133772

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133773
Approved by: https://github.com/janeyx99
2024-10-31 18:24:08 +00:00
Nhat Minh Luu
261d90c18f Add docs page for torch.inf and torch.nan (#138430)
Fixes #131040

## Description
Add docs for `torch.inf` and `torch.nan`,

## Checklist
- [x] The issue that is being fixed is referred in the description (see above "Fixes #ISSUE_NUMBER")
- [x] Only one issue is addressed in this pull request
- [x] Labels from the issue that this PR is fixing are added to this pull request
- [x] No unnecessary issues are included into this pull request.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138430
Approved by: https://github.com/ezyang
2024-10-31 05:46:46 +00:00
Boyuan Feng
68134a320e [Flex Attention] Paged Attention (#137164)
This PR adds paged attention for flex attention.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137164
Approved by: https://github.com/drisspg
2024-10-29 17:05:22 +00:00
Jeff Daily
7c7b2d89ba [ROCm] set hipblas workspace (#138791)
Fixes #138532.

This brings hipblas behavior in line with cublas behavior with respect to setting the workspace to an allocation from the caching allocator as well as the env var HIPBLAS_WORKSPACE_CONFIG.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138791
Approved by: https://github.com/naromero77amd, https://github.com/eqy, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-10-29 01:37:55 +00:00
Svetlana Karslioglu
e00ead400c Add a temporary Survey about the search (#139096)
- Add a link to the new search survey
- Add .css classes needed for the search banner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139096
Approved by: https://github.com/seemethere, https://github.com/cjyabraham
2024-10-28 23:43:25 +00:00
Joel Schlosser
8ba9063002 FlexAttention support for NJT (#136792)
This PR adds FlexAttention + NJT support. In particular:
* To handle raggedness, treats the packed sequence dim of input NJTs as a giant "stacked sequence". To ensure user `score_mod` / `mask_mod` functions can still be written in the original NJT sequence space, this PR handles conversions for indices within the giant "stacked sequence" -> sequence relative indices automatically.
* Provides `py_impls` for `NestedTensor` to the HOPs for flex attention forward / backward that simply wrap / unwrap NJTs appropriately
* Adds barebones `new_empty()` support to NJT since FlexAttention utilizes this repeatedly; right now, only `new_empty()` with a shape of `()` is supported
* Tests that FlexAttention with a causal mask matches causal SDPA
* Adds a new public API for FlexAttention usage:
    * `create_nested_block_mask(mask_mod, B, H, njt, BLOCK_SIZE, _compile)` - NJT analogue for `create_block_mask()` that utilizes the `njt`'s ragged structure to create an appropriately-sized block mask (e.g. `(1, 1, total_seqlen, total_seqlen)`). This function handles the index conversion from "stacked sequence" space -> relative sequence space.
      * Minor note: as this is a public API, this function is purposefully named with "nested" instead of "njt" to keep the latter as an informal, mostly internal-only term.

Example usage:
```python
def causal_mask(b, h, q_idx, kv_idx):
    return q_idx >= kv_idx

query = ... # NJT of shape (B, H, S*, D)
key = ... # NJT of shape (B, H, S*, D)
value = ... # NJT of shape (B, H, S*, D)
# create_nested_block_mask() automatically converts indices from "stacked sequence" space -> relative sequence space
block_mask = create_nested_block_mask(causal_mask, 1, 1, query)  # block mask conceptual shape is (B, H, sum(S*), sum(S*))
output = flex_attention(query, key, value, block_mask=block_mask)

def causal_score_mod(score, b, h, q_idx, kv_idx):
    return torch.where(q_idx >= kv_idx, score, float("-inf"))

# flex_attention() automatically converts indices from "stacked sequence" space -> relative sequence space for NJT inputs
output2 = flex_attention(query, key, value, score_mod=causal_score_mod)
```

TODO:
* ~~Determine the right level of abstraction for public API helpers + move them alongside other helpers~~ Verify this with others though
* ~~Some cleanup~~
* ~~`njt_score_mod_adapter`~~
* ~~Q: should `create_njt_block_mask()` call `njt_mask_mod_adapter()` so we don't need two calls?~~
* Can we avoid materializing the `sum(s)` length `seq_idx` used for conversion between stacked sequence -> sequence relative indices?
    * Not for now, although future work may deepen the integration between Flex + NJT (possibly requiring custom templates). We should try to cache this though.
* ~~Demonstrate non-causal mask~~
* Support non-contiguous NJTs with holes (**booted to future PR**)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136792
Approved by: https://github.com/drisspg
ghstack dependencies: #138841
2024-10-28 20:01:27 +00:00
Wouter Devriendt
bae3426af7 reimport pr137735 due to merging check issues (#138959)
This is  a cherry-pick from #137735 by @mikaylagawarecki , that cannot be merged due to a (wrongly) failing check for codev

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138959
Approved by: https://github.com/mikaylagawarecki
2024-10-27 16:31:34 +00:00
Yu, Guangye
40c098f731 Introduce a device-agnostic runtime API design (#132204)
# Motivation
According to [[RFC]A device-agnostic Python runtime API design for stream-based accelerators](https://github.com/pytorch/pytorch/issues/128403), this PR intends to introduce a device-agnostic runtime API design.
I personally prefer the **Simple Version** APIs that no longer accept the device type as an input argument. It means we will leverage `getAccelerator` to fetch the current accelerator. And it is flexible to expand these APIs to handle multiple types of accelerator scenarios. The design does **NOT** break the previous design philosophies.
I also believe that namespace torch.accelerator is better. It lets users know that the APIs they are calling are running on an accelerator rather than CPU. This is important. Meanwhile, we can follow a simple API design principle:
1. Device-agnostic APIs should be placed under the torch.accelerator namespace and not accept a device_type optional parameter.
2. Device-specific APIs should be placed under device-specific submodules.
3. APIS required by both CPU and accelerators should be placed under the torch namespace and accept a device_type optional parameter.

Also, I list the pros and cons of **Simple Version** here:
Pros:
- `torch.accelerator.foo` will have the same input argument as `torch.xxx.foo`, bringing a better user experience;
- more concise, facilitate the developer to write a device-agnostic code.

Cons:
- no obvious drawbacks.

# Additional Context
I list the new APIs here:
```python
torch.accelerator.is_available() -> bool:
torch.accelerator.current_accelerator() -> torch.device:
torch.accelerator.device_count() -> int:
torch.accelerator.current_device_idx() -> int:
torch.accelerator.set_device_idx(device: Union[torch.device, str, int, None]) -> None:
torch.accelerator.current_stream(device: Union[torch.device, str, int, None]) -> torch.Stream:
torch.accelerator.set_stream(stream: torch.Stream) -> None:
torch.accelerator.synchronize(device: Union[torch.device, str, int, None]) -> None:
```
According to the discussion with Alban, we decide to change the API name `set_device` to `set_device_idx` and `current_device` to `current_device_idx` for more explicit. And will submit other PR to support device and stream context manager.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132204
Approved by: https://github.com/EikanWang, https://github.com/abhilash1910, https://github.com/gujinghui, https://github.com/albanD
2024-10-27 10:37:09 +00:00
Laith Sakka
ed313a5ca2 Introduce torch.sym_add, variadic add (#138660)
Tested internally here: https://www.internalfb.com/diff/D64057744
This is a reland after previous internal failures.
main change is
```
 if min is None and max is None:
        torch._check_is_size(size)
        return
```

Partially addresses https://github.com/pytorch/pytorch/issues/128150

When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation.  Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments.  Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138660
Approved by: https://github.com/ezyang, https://github.com/bobrenjc93
2024-10-23 17:42:41 +00:00
Laith Sakka
662d07e93e Remove parallel_and and parallel_or (#138135)
Not used, suggested by @ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138135
Approved by: https://github.com/ezyang
2024-10-23 00:22:22 +00:00
Nikita Shulga
d1be61ce4e Update copyrights to 2024 (#138638)
Spiritual successor of https://github.com/pytorch/pytorch/pull/119413 + CPP docs copyright update as well
Fixes https://github.com/pytorch/pytorch/issues/138630

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138638
Approved by: https://github.com/atalman
2024-10-22 21:00:58 +00:00
Syed Tousif Ahmed
03c72976a5 Properly uses ref-counting for torch.cuda.use_mem_pool (#133600)
This PR refactors some ref-counting functionality out of `beginAllocateToPool` and `releasePool`. The ref-counting logic is then used in construction and destruction of `torch.cuda.MemPool`.

The `use_count` variable in the CUDACachingAllocator is essentially a refcount of how many context managers are using the pool. Since we are now lifting up the MemPool abstraction to the user, the MemPool object itself now needs to hold a an extra reference as well.

Part of https://github.com/pytorch/pytorch/issues/124807.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133600
Approved by: https://github.com/eqy, https://github.com/ezyang
2024-10-22 03:21:53 +00:00
Mikayla Gawarecki
e24871eb3c Add environment variable to force no weights_only load (#138225)
In preparation for `weights_only` flip, if users don't have access to the `torch.load` call

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138225
Approved by: https://github.com/albanD
2024-10-21 23:26:15 +00:00
Justin Chu
c6609ece84 [ONNX] Remove deprecated export_to_pretty_string (#137790)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137790
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
ghstack dependencies: #137789
2024-10-21 18:17:48 +00:00
Tugsbayasgalan Manlaibaatar
1f32a1fb80 Replace torch.export default decomp table to be lazily populated (#137650)
In this PR, we implement lazy dictionary for export decomp behaviour for following reasons:
1. Custom op loading can happen after import time, as a result, the decomp table might not be able to pick up the decomp. Therefore we try to delay materialization as late as possible.

I intentionally seperated out the core_aten_decomp to not have any custom CIA ops in this PR to mitigate the risk of getting reverted but in the future, core_aten_decomp under torch/_decomp will exist as an alias to official export table (torch.export.default_decompositions)

Differential Revision: [D64140807](https://our.internmc.facebook.com/intern/diff/D64140807)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137650
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-10-18 19:28:52 +00:00
Svetlana Karslioglu
9c2a80322a Add Programmable Google Search (#137716)
- Adding the code for the programmable Google search
- Adding the CSS overrides.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137716
Approved by: https://github.com/seemethere, https://github.com/albanD

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2024-10-18 18:18:16 +00:00
ErezYosef
5a81475884 Documentation Update: Fix Missing Whitespace in Optimizer Docs (#138321)
### Description:

This PR addresses a minor [formatting issue identified in a previous contribution to the Optimizer documentation](https://github.com/pytorch/pytorch/pull/134107#discussion_r1800833948).

Specifically, it fixes the missing whitespace after `param_names` in the section on utilizing named parameters to load the optimizer state dict.

You can find the related docs here:
[Optimizer Documentation](https://pytorch.org/docs/main/optim.html#how-to-utilize-named-parameters-to-load-optimizer-state-dict).

@janeyx99

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138321
Approved by: https://github.com/janeyx99
2024-10-18 15:41:43 +00:00
Yu, Guangye
8cda774a03 Add torch.xpu.get_arch_list and torch.xpu.get_gencode_flags for XPU (#137773)
# Motivation
Add `torch.xpu.get_arch_list()` and `torch.xpu.get_gencode_flags()` methods that return architecture list and AOT flags to preserve what flags PyTorch XPU was built with.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137773
Approved by: https://github.com/EikanWang, https://github.com/albanD
2024-10-18 02:28:08 +00:00
Zheng, Zhaoqiong
7ba706c74e update get start xpu (#137479)
1. respect the comment from the community, downgrade the "Beta" to "Prototype" for the first xpu release with wheel
2. add wheels installation of torchaudio & torchvision for nightly on Windows
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137479
Approved by: https://github.com/atalman, https://github.com/malfet
2024-10-16 17:36:29 +00:00
PyTorch MergeBot
dd32a32cb6 Revert "Expose option to disable CRC-32 computation during torch.save (#137735)"
This reverts commit 534fa96f2d.

Reverted https://github.com/pytorch/pytorch/pull/137735 on behalf of https://github.com/clee2000 due to failing internally D64438525, probably needs gating ([comment](https://github.com/pytorch/pytorch/pull/137735#issuecomment-2417412264))
2024-10-16 17:03:06 +00:00
William Wen
4c8718d8e7 [dynamo] add torch.compiler.set_stance (#137504)
Attempt # 2 at https://github.com/pytorch/pytorch/pull/132926 to implement https://github.com/pytorch/pytorch/issues/123771.

Implement a new `torch.compiler.set_stance` function that can force `torch.compile` regions to run eagerly.

See added tests for usage examples.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137504
Approved by: https://github.com/yf225, https://github.com/jansel
2024-10-16 16:18:25 +00:00
Howard Huang
75109682b6 [Pipelining] Refactor Interleaved1F1B and ZeroBubble (#137783)
NOTE: this PR removes `ScheduleFlexibleInterleaved1F1B`, let me know if theres any concerns.

`ScheduleFlexibleInterleaved1F1B` is a superset of `Interleaved1F1B` and uses most of the same implementation, but relaxes the condition that `n_microbatches % pp_size == 0`. This is refactors the implementation into `Interleaved1F1B` and then removes it since it is confusing to have both schedules with similar names. This also refactors the zero bubble logic to belong in the `ZeroBubble` schedule class.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137783
Approved by: https://github.com/wconstab
2024-10-16 03:05:14 +00:00
Jane Xu
eaec72d1e6 Link directly to new Custom Ops Landing Page (#137933)
e.g., click on first link in https://docs-preview.pytorch.org/pytorch/pytorch/137933/library.html#testing-custom-ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137933
Approved by: https://github.com/zou3519
2024-10-15 21:18:21 +00:00
Mikayla Gawarecki
534fa96f2d Expose option to disable CRC-32 computation during torch.save (#137735)
Option only works in open source, not internal

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137735
Approved by: https://github.com/albanD
2024-10-15 19:30:02 +00:00
PyTorch MergeBot
2831af39c4 Revert "[ONNX] Remove deprecated export_to_pretty_string (#137790)"
This reverts commit d0628a7e39.

Reverted https://github.com/pytorch/pytorch/pull/137790 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/137789#issuecomment-2414632100))
2024-10-15 17:40:06 +00:00
Alex Baden
39d21ed803 [Inductor] Update AttrsDescriptor instantiation for Triton changes (#137458)
The `AttrsDescriptor` class has been present in Triton for almost a year now (introduced [here](72c9833927)), so we should be able to rely on it existing. I am in the process of supporting the new `AttrsDescriptor` class and @jansel suggested I split changes to the existing class out separately to make sure nothing breaks removing the legacy attribute descriptor attributes.

Initially I attempted to remove the branching around detecting whether `AttrsDescriptor` exists but that breaks because PyTorch must build without Triton. So, I went back and updated for the naming introduced in the commit linked above, and also removed two unused attributes `divisible_by_8` and `ids_to_fold` which were removed in Feb 2024 (https://github.com/triton-lang/triton/pull/3122 and https://github.com/triton-lang/triton/pull/3080 respectively).

With these changes only the internal workings of the `AttrsDescriptor` class will differ between supported Triton versions, but the data stored will remain consistent.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137458
Approved by: https://github.com/jansel
2024-10-14 20:20:29 +00:00
ErezYosef
197601eeea Add Support for Tracking Parameter Names (named_parameters) in Optimizer State Dict (#134107)
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**

(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)

## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
    'state': {
    0: {'momentum_buffer': tensor(...), ...},
    1: {'momentum_buffer': tensor(...), ...},
    },
    'param_groups': [
        {
        'lr': 0.01,
        'weight_decay': 0,
        ...
        'params': [0,1]
        'param_names' ['layer.weight', 'layer.bias']  (optional)
        }
    ]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.

## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.

## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.

#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.

## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.

## Solution Example:

A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
    # assuming a single param group.
    current_state_group = optimizer.state_dict()['param_groups'][0]
    loaded_state_group = state_dict['param_groups'][0]

    # same number of params, same names, only different ordering
    current_state_name_to_id_mapping = {}  # mapping --  param_name: id
    for i, name in enumerate(current_state_group['param_names']):
        current_state_name_to_id_mapping[name] = current_state_group['params'][i]

    # changing the ids of the loaded state dict to match the order of the given state dict.
    for i, name in enumerate(current_state_group['param_names']):
        loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]

    return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.

### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-10-14 19:24:44 +00:00
Justin Chu
d0628a7e39 [ONNX] Remove deprecated export_to_pretty_string (#137790)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137790
Approved by: https://github.com/titaiwangms
ghstack dependencies: #137789
2024-10-11 20:10:04 +00:00
Jiong Gong
e30c55ee52 Update maintainers for inductor and x86 CPU (#136839)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136839
Approved by: https://github.com/Skylion007, https://github.com/albanD, https://github.com/malfet
2024-10-11 07:24:07 +00:00
Jin Zhou
5516ac5c21 [ROCm] Tunableop record untuned (#128813)
When enable tunableop, It is easy to have OOM since APP usually needs large video memory size, such as running a LLM for inference.  So we need a offline mode to tune the GEMMs. This PR provide an offline mode for tunableOp:

- record untuned GEMMs to file.

- a python API named tune_gemm_in_file is added to read the untuned file and tune the GEMMs in file

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128813
Approved by: https://github.com/jeffdaily, https://github.com/hongxiayang, https://github.com/naromero77amd

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-10-09 21:59:03 +00:00
Jane Xu
cfe970260a Clarify opt-einsum usage, fix #127109 (#137596)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137596
Approved by: https://github.com/albanD
2024-10-09 20:31:24 +00:00
PyTorch MergeBot
16a2c2cfd4 Revert "Introduce torch.sym_sum (#136429)"
This reverts commit 90bed32b98.

Reverted https://github.com/pytorch/pytorch/pull/136429 on behalf of https://github.com/ezyang due to fails internal stuff ([comment](https://github.com/pytorch/pytorch/pull/136429#issuecomment-2403335147))
2024-10-09 20:08:01 +00:00
Edward Z. Yang
90bed32b98 Introduce torch.sym_sum (#136429)
Partially addresses https://github.com/pytorch/pytorch/issues/128150

When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation.  Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments.  Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.

update_hint_regression benchmark, before and after:

```
update_hint_regression,compile_time_instruction_count,2648328980
update_hint_regression,compile_time_instruction_count,2563748678
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136429
Approved by: https://github.com/isuruf
2024-10-08 18:12:57 +00:00
Michael Lazos
22e19bd2d7 Add link to torch.compile the missing manual in troubleshooting (#137301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137301
Approved by: https://github.com/svekars

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2024-10-04 18:19:30 +00:00
Jeff Daily
c7b0d4b148 raw_alloc ignores PYTORCH_NO_CUDA_MEMORY_CACHING (#131114)
raw_alloc is used by cudnn, miopen, thrust, and tunableop.  Without this PR, the env var for disabling the caching allocator will only partially work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131114
Approved by: https://github.com/eqy, https://github.com/houseroad, https://github.com/albanD

Co-authored-by: Nichols A. Romero <nick.romero@amd.com>
2024-10-04 15:36:29 +00:00
PyTorch MergeBot
0d1701f310 Revert "raw_alloc ignores PYTORCH_NO_CUDA_MEMORY_CACHING (#131114)"
This reverts commit 7001907480.

Reverted https://github.com/pytorch/pytorch/pull/131114 on behalf of https://github.com/PaliC due to failing internal builds ([comment](https://github.com/pytorch/pytorch/pull/131114#issuecomment-2390615007))
2024-10-03 06:22:55 +00:00
Xilun Wu
54f50f19eb [dtensor][experimental] expose DTensor Context Parallel API (#137038)
**Summary**
expose experimental Context Parallel API `torch.distributed.tensor.experimental._attention.context_parallel` to module `torch.distributed.tensor.experimental`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137038
Approved by: https://github.com/wz337, https://github.com/fegin
2024-10-02 18:00:23 +00:00
Jeff Daily
7001907480 raw_alloc ignores PYTORCH_NO_CUDA_MEMORY_CACHING (#131114)
raw_alloc is used by cudnn, miopen, thrust, and tunableop.  Without this PR, the env var for disabling the caching allocator will only partially work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131114
Approved by: https://github.com/eqy, https://github.com/houseroad, https://github.com/albanD

Co-authored-by: Nichols A. Romero <nick.romero@amd.com>
2024-10-02 16:27:15 +00:00
Nikita Shulga
76a57568de Update windows maintainers (#136901)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136901
Approved by: https://github.com/albanD
2024-09-30 16:12:49 +00:00
albanD
2421344d8f Update current maintainers (#136672)
This file didn't had an overall in a few years so long overdue. Most of the credit goes to @orionr for gathering all of this info.

The main rules we followed:
- No code contributor is removed, they're all placed as emeritus
- Breakdown too big categories to make this document useful to know who to ping
- No category where the code is still in the codebase is removed
- We did not rework the categories (for example to be closer to module: labels) and leave that for later
- All non-emeritus names are ordered by their number of comments on issues related to their topic
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136672
Approved by: https://github.com/eqy, https://github.com/ezyang, https://github.com/seemethere, https://github.com/malfet
2024-09-26 17:13:16 +00:00
Zheng, Zhaoqiong
f3dd1721f4 [Update] Update note for Getting Started with PyTorch on Intel GPUs (#129946)
remove the hardware and software prerequisites and set up env part.
keep the prerequisites section and link to pytorch prerequistes for intel gpus for driver install, intel support package install and env set up
https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
Update the support for Intel Client GPU MTL-H
Update inference & training examples

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129946
Approved by: https://github.com/seemethere
2024-09-26 00:22:05 +00:00
Jokeren
cabfbef6cf [pytorch][PR] [inductor] More fixes on the keys of constants and signature dictionaries (#136514)
Summary: Previous PR forgets to change two other places that also create `constants` and `signature`.

Test Plan:
Imported from GitHub, without a `Test Plan:` line.
 {F1884584338}

Differential Revision: D63027728

Pulled By: Myrthan

Co-authored-by: Jokeren <robinho364@gmail.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136514
Approved by: https://github.com/jansel

Co-authored-by: Jokeren <robinho364@gmail.com>
2024-09-25 09:34:14 +00:00
Nichols A. Romero
482fe186b9 Add ROCm documentation to libtorch (C++) reST. (#136378)
Fixes #126640

Added ROCm support section to libtorch (C++) reST.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136378
Approved by: https://github.com/ezyang
2024-09-25 02:30:56 +00:00
Jianyu Huang
0a35986cdb Add option to configure reduced precision math backend for SDPA (#135964)
Summary: Address https://github.com/pytorch/pytorch/issues/135778 by adding a global flag to configure whether using high precision or low precision for math backend of SDPA.

Test Plan: buck2 run mode/opt //scripts/feikou/llm:run_attn_kernels

Differential Revision: D62625515

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135964
Approved by: https://github.com/jbschlosser
2024-09-24 07:11:38 +00:00
Nikita Shulga
4fd16dd8aa Clarify that libtorch API is C++17 compatible (#136471)
As it relies on some common C++17 primitives, such as `std::optional`
Replace all docs references from C++14 to C++17

Fixes https://github.com/pytorch/pytorch/issues/133205

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136471
Approved by: https://github.com/kit1980, https://github.com/atalman
2024-09-24 02:03:33 +00:00
Sergii Dymchenko
d9aca9914b Remove duplicated words in library.rst (#136340)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136340
Approved by: https://github.com/svekars
2024-09-20 03:30:54 +00:00
Banit Agrawal
a575ce0dc6 [PyTorch Pinned Allocator] Add support of background thread to process events (#135524)
Summary: Currently we process events in the regular allocation path and we call cudaEventQuery to check on the events and this path can take some locks in libcuda driver. Its not entirely needed to do process events in the allocation path, we could move this to a background thread and keep processing events regularly and put the freed block to the free list.

Differential Revision: D62396585

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135524
Approved by: https://github.com/zyan0
2024-09-17 21:08:10 +00:00
Banit Agrawal
48d18fbd4c [PyTorch CUDA Allocator] Allow reuse of non-split blocks with better rounding (#136174)
Summary:
This diff adds an option to round the non-split blocks in caching allocator so that they can be reused without causing lots of fragmentation for large memory segments.

For example, if we specify max_split memory size as 400MB, then all allocations more than 400MB will not be split. Lets say, we allocated some 1024MB blocks and these are cached in the allocator blocks. If we request a new 500MB block, we round it to nearest power-2-division, thats 512MB, we add default kLargeBuffer of 20MB, that will be 532MB and since 532MB is less than existing 1024MB block, the 1024MB will not be used for this allocation, instead a new 512MB block will be created. In this diff, we provide an option to cofigure the kLargeBuffer for rounding and expose as a configurable option, so 512MB + max_non_split_rounding_size and if thats greater than 1024MB, we will use te 1024MB and we wont create a new 512MB block using cudaMalloc. This option is added so that we can pre-allocate some large blocks so that we can reuse them as much as possible and we dont stall on calling cudaMalloc.

Differential Revision: D62758758

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136174
Approved by: https://github.com/zyan0
2024-09-17 19:08:44 +00:00
Trung Truong
cc365fdd7b [MTIA] Support torch.cuda.get_device_capability equivalent API on MTIA (#135889)
Summary:
Mirror `get_device_capability` on MTIA per https://fburl.com/gdoc/p4lo5avn

At the moment, both the major and minor version are just 0

Test Plan:
Unit test: `buck2 test //mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api`

https://www.internalfb.com/intern/testinfra/testconsole/testrun/1688850109958190/

Differential Revision: D62595296

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135889
Approved by: https://github.com/egienvalue
2024-09-17 17:42:56 +00:00
Nikita Shulga
38caf10411 [EZ] Fix spelling typo (#136157)
s/toosl/tools/ (spotted by @louie-tsai)
Also, capitalize CUDA

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136157
Approved by: https://github.com/kit1980
2024-09-16 19:30:30 +00:00
PyTorch MergeBot
0199fd4d7e Revert "[inductor] More fixes on the keys of constants and signature dictionaries (#135406)"
This reverts commit e54b559e88.

Reverted https://github.com/pytorch/pytorch/pull/135406 on behalf of https://github.com/jeanschmidt due to Reverting as it is breaking triton_mtia internal signals @jansel could you have a look and help get those changes merged? ([comment](https://github.com/pytorch/pytorch/pull/135406#issuecomment-2353557481))
2024-09-16 17:58:02 +00:00
Howard Huang
e501ed71d4 Update link in distributed.tensor.parallel.rst (#136103)
dtensor folder was moved

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136103
Approved by: https://github.com/kwen2501, https://github.com/fegin
2024-09-15 19:36:29 +00:00
Tugsbayasgalan Manlaibaatar
dec3403b24 Add some doc for export_for_training (#135918)
Differential Revision: [D62610491](https://our.internmc.facebook.com/intern/diff/D62610491)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135918
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #135080, #135912
2024-09-15 17:08:12 +00:00
Tugsbayasgalan Manlaibaatar
1904b09e61 Create export_for_inference API and expose core_aten as public facing API (#135912)
Differential Revision: [D62606908](https://our.internmc.facebook.com/intern/diff/D62606908)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135912
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #135080
2024-09-15 17:05:07 +00:00
Justin Chu
e2d3af405f [ONNX] Remove logging apis from public (#133825)
Remove

- torch.onnx.enable_log
- torch.onnx.disable_log
- torch.onnx.set_log_stream
- torch.onnx.log

Because they are not meant for public consumption and has been marked for deprecation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133825
Approved by: https://github.com/titaiwangms
2024-09-13 22:19:52 +00:00
CaoE
2f53d570fe Update document for autocast on CPU (#135299)
Update document for autocast on CPU due to the support of float16 and changes in the operator list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135299
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/svekars
2024-09-13 09:11:47 +00:00
Jokeren
e54b559e88 [inductor] More fixes on the keys of constants and signature dictionaries (#135406)
Previous PR forgets to change two other places that also create `constants` and `signature`. https://github.com/pytorch/pytorch/pull/135170

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135406
Approved by: https://github.com/jansel
2024-09-13 04:10:41 +00:00
Xavier Dupré
5e145861f2 [ONNX] Improves documentation of ONNX exporter (#135372)
The PR updates the documentation to reflect the changes introduced in pytorch 2.5 and related to onnx exporter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135372
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-09-09 15:09:01 +00:00
Wanchao Liang
cfc227ad43 [reland][dtensor] move DTensor to public namespace (#134203)
reland of https://github.com/pytorch/pytorch/pull/133113

I have to create a new PR because the previous reverted PR could not either be rebased, or imported successfully :(

----

Moving DTensor to be in the public namespace, to formally add the documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next PRs)
* To preserve the BC for users still using the torch.distributed._tensor, I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still working without changing the public imports. So it's safe to land the changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134203
Approved by: https://github.com/tianyu-l
2024-09-08 17:08:40 +00:00
Yu, Guangye
b53d97c7be [Intel GPU] Add XPU memory-related APIs (#129919)
# Motivation
According to https://github.com/pytorch/pytorch/issues/116322, we will help unify the device allocator. So we introduce a simple xpu device allocator only with the key functionality first. And expect to add some memory statistics-related functionality after the unification.
But now, some memory statistic-related APIs listed in https://github.com/pytorch/pytorch/issues/127929 are requested. We need more time to unify the device allocator. In order to facilitate the user experience, we expect to support these memory statistic-related APIs before the unification.

# Additional Context
Fixes: #127929

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129919
Approved by: https://github.com/dvrogozh, https://github.com/abhilash1910, https://github.com/gujinghui, https://github.com/EikanWang, https://github.com/albanD
ghstack dependencies: #130923
2024-09-07 11:15:17 +00:00
Justin Chu
a6b9d444fb [ONNX] Refactor exporter errors (#135180)
Refactor exporter errors to combine old errors and new errors for API consistency.

This PR also

1. Removes the `_C._check_onnx_proto(proto)` call in the old exporter. We don't need the ONNX checker because it is limited.
2. Removes the `OnnxExporterError` defined in the dynamo module. This class unnecessarily stores the onnx program object, making it very bulky. Instead, we revert to use the plain OnnxExporterError defined in the `errors` module and use it as the base class for all errors.
3. Continues to expose `OnnxExporterError` in `torch.onnx` and the rest of the errors in `torch.onnx.errors`.
4. Removes the `CheckerError` and `InvalidExportOptionsError` from `torch.onnx`. This is BC breaking but should have low impact.
5. I did not rename existing errors out of compatibility considerations, even though `ExporterError` would have been more succinct.

Fixes https://github.com/pytorch/pytorch/issues/135125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135180
Approved by: https://github.com/titaiwangms
2024-09-07 00:50:15 +00:00
PyTorch MergeBot
a681260caf Revert "[ONNX] Refactor exporter errors (#135180)"
This reverts commit 5eebd9315a.

Reverted https://github.com/pytorch/pytorch/pull/135180 on behalf of https://github.com/clee2000 due to I think this broke test_public_bindings.py::TestPublicBindings::test_correct_module_names [GH job link](https://github.com/pytorch/pytorch/actions/runs/10743909338/job/29800779403) [HUD commit link](5eebd9315a), possibly a landrace with the PR that landed before it ([comment](https://github.com/pytorch/pytorch/pull/135180#issuecomment-2334844191))
2024-09-06 21:39:18 +00:00
Justin Chu
5eebd9315a [ONNX] Refactor exporter errors (#135180)
Refactor exporter errors to combine old errors and new errors for API consistency.

This PR also

1. Removes the `_C._check_onnx_proto(proto)` call in the old exporter. We don't need the ONNX checker because it is limited.
2. Removes the `OnnxExporterError` defined in the dynamo module. This class unnecessarily stores the onnx program object, making it very bulky. Instead, we revert to use the plain OnnxExporterError defined in the `errors` module and use it as the base class for all errors.
3. Continues to expose `OnnxExporterError` in `torch.onnx` and the rest of the errors in `torch.onnx.errors`.
4. Removes the `CheckerError` and `InvalidExportOptionsError` from `torch.onnx`. This is BC breaking but should have low impact.
5. I did not rename existing errors out of compatibility considerations, even though `ExporterError` would have been more succinct.

Fixes https://github.com/pytorch/pytorch/issues/135125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135180
Approved by: https://github.com/titaiwangms
2024-09-06 19:10:56 +00:00
Nowtryz
a15aabc975 Add MaskedTensor passthrough: unfold, F.Unfold, F.Fold, stack (#125262)
Hi,
I noticed the `unfold` operator was missing on MaskedTensor.

I tested that my change works when calling unfold and backward on a `MaskedTensor` but I didn't find the tests for the dispatch of such operation. Where is it?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125262
Approved by: https://github.com/cpuhrsch
2024-09-06 19:06:23 +00:00
titaiwangms
28ccfba248 [ONNX] Delete ONNXProgramSerializer (#135261)
Fixes #135182

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135261
Approved by: https://github.com/justinchuby
2024-09-05 23:52:51 +00:00
Mikayla Gawarecki
a096f2899d Add torch.serialization.skip_data context manager (#134504)
## Semantic

The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).

```python
import torch
import torch.nn as nn

sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
    torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```

(2)  With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)

```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode

with FakeTensorMode():
    m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')

sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
    torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])

```

## Follow Ups

- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)

Differential Revision: [D62238610](https://our.internmc.facebook.com/intern/diff/D62238610)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
2024-09-05 16:53:39 +00:00
Animesh Jain
32f45f01a9 [dynamo] Retire CompileProfiler (#135133)
Fixes confusion in https://github.com/pytorch/pytorch/issues/113443

We have TORCH_LOGS that supersedes CompileProfiler

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135133
Approved by: https://github.com/ezyang
ghstack dependencies: #135039, #135121, #135129, #135130
2024-09-05 01:08:40 +00:00
Svetlana Karslioglu
0d193a0adf Add ExecuTorch warning to mobile_optimizer (#134697)
Preview: https://docs-preview.pytorch.org/pytorch/pytorch/134697/mobile_optimizer.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134697
Approved by: https://github.com/ali-khosh, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-09-04 17:47:14 +00:00
PyTorch MergeBot
2fd36086bc Revert "Add torch.serialization.skip_data context manager (#134504)"
This reverts commit 94db935749.

Reverted https://github.com/pytorch/pytorch/pull/134504 on behalf of https://github.com/kit1980 due to See D62082697 ([comment](https://github.com/pytorch/pytorch/pull/134504#issuecomment-2327542276))
2024-09-03 22:21:27 +00:00
Mikayla Gawarecki
94db935749 Add torch.serialization.skip_data context manager (#134504)
## Semantic

The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).

```python
import torch
import torch.nn as nn

sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
    torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```

(2)  With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)

```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode

with FakeTensorMode():
    m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')

sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
    torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])

```

## Follow Ups

- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
2024-08-29 04:52:52 +00:00
Syed Tousif Ahmed
4655eb3ee2 Uses MemPoolContext to route allocations from CUDACachingAllocator (#134685)
Re-open of https://github.com/pytorch/pytorch/pull/133599 that was mistakenly closed by issuing `ghstack land`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134685
Approved by: https://github.com/ezyang
2024-08-29 03:56:31 +00:00
PyTorch MergeBot
503c0dd923 Revert "Add MaskedTensor support to *_like API (#128637)"
This reverts commit b6e51711a0.

Reverted https://github.com/pytorch/pytorch/pull/128637 on behalf of https://github.com/ZainRizvi due to Actually, seems like it was this commit that introduced the failure: test_maskedtensor.py::TestOperatorsCUDA::test_like_empty_like_layout1_cuda_bool [GH job link](https://github.com/pytorch/pytorch/actions/runs/10604690725/job/29392898277) [HUD commit link](b6e51711a0) ([comment](https://github.com/pytorch/pytorch/pull/128637#issuecomment-2316554188))
2024-08-29 01:42:52 +00:00
PyTorch MergeBot
1285443994 Revert "Add torch.serialization.skip_data context manager (#134504)"
This reverts commit 202600bc23.

Reverted https://github.com/pytorch/pytorch/pull/134504 on behalf of https://github.com/mikaylagawarecki due to This is breaking Windows docs tests due to NamedTemporaryFile on Windows not working well ([comment](https://github.com/pytorch/pytorch/pull/134504#issuecomment-2316543901))
2024-08-29 01:30:49 +00:00
Avik Chaudhuri
ca03a14cf7 hang dim hint constants off Dim (#134702)
Summary: Retry landing https://github.com/pytorch/pytorch/pull/134484

Test Plan: (see original)

Differential Revision: D61925860

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134702
Approved by: https://github.com/pianpwk
2024-08-29 01:02:01 +00:00
Mikayla Gawarecki
202600bc23 Add torch.serialization.skip_data context manager (#134504)
## Semantic

The semantic is
(1) By default `torch.serialization.skip_data(materialize_fake_tensors=False)` will make `torch.save` skip writing storages (but reserve space for them in the checkpoint).

```python
import torch
import torch.nn as nn

sd = nn.Linear(3, 5).state_dict()
with torch.serialization.skip_data():
    torch.save(sd, 'foo.pt')
print(torch.load('foo.pt', weights_only=True))
```

(2)  With `torch.serialization.skip_data(materialize_fake_tensors=True)`If FakeTensor is passed to `torch.save` the pickler will treat these FakeTensors as being "materialized" space will be reserved in the checkpoint for the associated storage bytes, and when loading the type will be Tensor instead of FakeTensor)

```python
import torch
import torch.nn as nn
from torch._subclasses.fake_tensor import FakeTensorMode

with FakeTensorMode():
    m = nn.Linear(3, 5, dtype=torch.float16, device='cuda')

sd = m.state_dict()
with torch.serialization.skip_data(materialize_fake_tensors=True):
    torch.save(sd, 'bla.pt')
print(torch.load('bla.pt', weights_only=True))
# OrderedDict([('weight', tensor([[0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.],
#        [0., 0., 0.]], device='cuda:0', dtype=torch.float16)), ('bias', tensor([0., 0., 0., 0., 0.], device='cuda:0', dtype=torch.float16))])

```

## Follow Ups

- [ ] `torch.load` semantic for skip_data context manager
- [ ] Mechanism for getting offsets of storages saved via this method (for writing in a separate pass)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134504
Approved by: https://github.com/albanD
2024-08-28 23:53:17 +00:00
PyTorch MergeBot
f997b2b8e6 Revert "Add MaskedTensor passthrough: unfold, F.Unfold, F.Fold, stack (#125262)"
This reverts commit f685018ea9.

Reverted https://github.com/pytorch/pytorch/pull/125262 on behalf of https://github.com/ZainRizvi due to Hi, this PR appears to be calling maskedtensor tests to fail on main. Please rebase your changes onto the latest trunk build to repro the failure. test_maskedtensor.py::TestOperatorsCUDA::test_like_empty_like_layout1_cuda_bool [GH job link](https://github.com/pytorch/pytorch/actions/runs/10604716811/job/29393256312) [HUD commit link](f685018ea9) ([comment](https://github.com/pytorch/pytorch/pull/125262#issuecomment-2316387447))
2024-08-28 23:10:07 +00:00
Nowtryz
f685018ea9 Add MaskedTensor passthrough: unfold, F.Unfold, F.Fold, stack (#125262)
Hi,
I noticed the `unfold` operator was missing on MaskedTensor.

I tested that my change works when calling unfold and backward on a `MaskedTensor` but I didn't find the tests for the dispatch of such operation. Where is it?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125262
Approved by: https://github.com/cpuhrsch
2024-08-28 21:30:39 +00:00
Nowtryz
b6e51711a0 Add MaskedTensor support to *_like API (#128637)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128637
Approved by: https://github.com/cpuhrsch
2024-08-28 21:28:23 +00:00
PyTorch MergeBot
13d40f6fc5 Revert "hang dim hint constants off Dim (#134484)"
This reverts commit c142af7209.

Reverted https://github.com/pytorch/pytorch/pull/134484 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/134484#issuecomment-2315749549))
2024-08-28 16:05:42 +00:00
Avik Chaudhuri
c142af7209 hang dim hint constants off Dim (#134484)
Summary: Recently https://github.com/pytorch/pytorch/pull/133620 added support for automatic dynamic shapes, where a new enum, `DIM`, was introduced to provide hints like `AUTO` and `STATIC`. This PR is a nominal change where we expose the hints via the existing public `Dim` API, and remove `DIM` from the public API. The main motivation is to avoid having users need to import too many things.

Test Plan: existing

Differential Revision: D61807361

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134484
Approved by: https://github.com/angelayi
2024-08-28 14:35:40 +00:00
Jerry Zhang
3ef4c27ab3 Update pt2e numeric debugger to use node.meta["custom"] field (#134040)
Summary:
With https://github.com/pytorch/pytorch/pull/131912 we now have a "custom" field in node.meta that can be preserved
in

* copy/deepcopy
* run_decompositions()
* serialization
* re-exporting

So we refactored numeric debugger to use this.

Test Plan:
python test/test_quantization.py TestNumericDebugger

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134040
Approved by: https://github.com/tarun292
2024-08-27 19:51:03 +00:00
Tianyi Tao
7af38eb98b Fix unexpected inference_mode interaction with torch.autograd.functional.jacobian (#130307)
Fixes #128264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130307
Approved by: https://github.com/soulitzer
2024-08-25 22:14:02 +00:00
Yiming Zhou
2cfc2da527 [export] Make move_to_device_pass function public (#134263)
Summary:
This is a follow-up of https://github.com/pytorch/pytorch/pull/133660

Here we make the `move_to_device_pass()` function publich so users can call it by `from torch.export.passes import move_to_device_pass`

Test Plan: CI

Differential Revision: D61671310

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134263
Approved by: https://github.com/angelayi
2024-08-23 23:18:30 +00:00
Pian Pawakapan
8ff3a5be1b [export] basic auto dynamic shapes (#133620)
Starter version of automatic dynamic shapes for export.

Creates enums `DIM.AUTO`, `DIM.STATIC`, allowing user to specify `AUTO` for dims in dynamic_shapes specs, meaning that corresponding dims are treated as dynamic, and relevant guards will do what's necessary (e.g. refine ValueRanges, set replacements based on equality, or even set static) without raising ConstraintViolationErrors. Basically allows the user to say, "a bunch of these dims can be dynamic, let export do model analysis and return the program with maximum possible dynamism, without complaining".

The usage for specifying `dynamic_shapes` is now:
```
AUTO -> dynamic by default, return whatever produce_guards() says, even if it's static
None/int/STATIC -> static
Dim/DerivedDim -> same as before - will complain if the min/max range is invalid, or if dims related to this are unspecified.
```

Caveat 1: specifying `AUTO` for a dim won't guarantee it'll be dynamic:

- specifying `AUTO` for a dim will return the maximum possible dynamism given your program and other specified constraints, but this can still mean you'll get a static program. For example, with the program below, x is specified dynamic, but it's equal to y, which is specified static, and with how we currently do things we won't promote y to dynamic, but will demote(?) x to static. So this can be surprising if you don't fully know your model, and/or missed one of your other inputs when specifying auto-dynamic shapes.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": None})
```

Caveat 2: specifying `AUTO` and Dims in the same spec is still problematic:

- The way Dims/DerivedDims are currently handled is very strict. A Dim represents a symbol, and we require a user to specify the symbol for all dims governed by the symbol - that's why we've seen errors in the past like `The values of x must always be related to y by ...`, asking the user to specify the exact relation as in the program. We also require the specified min/max range to be a subset of the valid range from model analysis. All this doesn't compose well with specifying `AUTO` just yet - for example in the program below, ideal behavior could be to return a dynamic program, where `dx = x.size(0) = y.size(0)` has range (3,6). Unfortunately this crashes, and correct behavior is to specify `dx` for both inputs. So currently we raise a UserError and crash if both Dims + `AUTO` are present in the spec.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": {0: Dim("dx", min=3, max=6)}})  # this doesn't work, because x & y and related
```

Implementation details:

This is done by setting `assume_static_by_default=False`, and doing a transform on the `dynamic_shapes` spec to preserve semantics. `assume_static_by_default=False` will treat unspecified dims or Nones as dynamic. This is the opposite of what `export.export()` currently does - unspecified Dims/Nones are treated as static. Historically this static-by-default behavior, where the user deals with fewer guards, has been desirable, and we would like to respect that in this implementation. So this internal spec transformation is added, `_transform_shapes_for_default_dynamic()`, does the spec conversion necessary to be compatbile with dynamic by default. Specifically, AUTOs are converted into Nones, and Nones/unspecified dims are filled in with explicitly static constraints.

For example, this would look like, for a 3-d tensor: `{0: DIM.AUTO, 1: None, 2: Dim("dx")} -> {0: None, 1: 32, 2: Dim("dx")}`

This does seem overly complicated, but it's done to preserve dynamic shapes semantics for `torch._dynamo.export()`, which already uses `assume_static_by_default=False`, and follows the same process for generating shape constraints , via `_process_dynamic_shapes`. There the semantics are:
```
None/unspecified: dynamic by default
Dim/DerivedDim: also a strict assertion
```

If we don't care about BC for `_dynamo.export(dynamic_shapes)`, then we can just modify semantics for `_process_dynamic_shapes()` and change all the relevant tests in `test/dynamo/test_export.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133620
Approved by: https://github.com/avikchaudhuri
2024-08-23 22:56:39 +00:00
Avik Chaudhuri
b454c51060 remove dynamic_dim (#134211)
Summary: As promised in https://github.com/pytorch/pytorch/pull/134045.

Test Plan: existing

Differential Revision: D61646937

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134211
Approved by: https://github.com/angelayi
2024-08-23 04:13:03 +00:00
Howard Huang
108a75b454 [PP] Add ZeroBubble schedule (#133467)
Zero bubble can be expressed through `ScheduleFlexibleInterleaved1F1B` by setting `enable_zero_bubble=True`. But instead of having to include this flag in schedule initialization we should create a separate ZeroBubbleSchedule and also transition `Interleaved1F1B` to derive from `ScheduleFlexibleInterleaved1F1B`. Then we dont need to expose `ScheduleFlexibleInterleaved1F1B` since the naming is not obvious

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133467
Approved by: https://github.com/wconstab
ghstack dependencies: #132691
2024-08-22 13:32:15 +00:00
Zitong Zhan
90c821814e SparseCsrCUDA: cuDSS backend for linalg.solve (#129856)
This PR switches to cuDSS library and has the same purpose of #127692, which is to add Sparse CSR tensor support to linalg.solve.
Fixes #69538

Minimum example of usage:
```
import torch

if __name__ == '__main__':
    spd = torch.rand(4, 3)
    A = spd.T @ spd
    b = torch.rand(3).to(torch.float64).cuda()
    A = A.to_sparse_csr().to(torch.float64).cuda()

    x = torch.linalg.solve(A, b)
    print((A @ x - b).norm())

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129856
Approved by: https://github.com/amjames, https://github.com/lezcano, https://github.com/huydhn

Co-authored-by: Zihang Fang <zhfang1108@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
2024-08-22 07:57:30 +00:00
Jesse Cai
255cd75a97 [sparse] Add cuSPARSELt as a backend (#128534)
Summary:

This PR adds in cuSPARSELt as a backend to PyTorch.

It is now possible to see if cuSPARSELt is available and the version if
it is with
```
torch.backends.cusparselt.is_available()
torch.backends.cusparselt.version()
```

Test Plan:
```
python test/test_sparse_semi_structured.py -k test_cusparselt_backend
```

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128534
Approved by: https://github.com/cpuhrsch, https://github.com/eqy, https://github.com/syed-ahmed
2024-08-21 22:06:07 +00:00
Xuehai Pan
022cd7c9aa [RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.

5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)

Example:

```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...

>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
...     for i, item in enumerate(sequence):
...         if item is x or item == x:
...             return i
...     raise ValueError("sequence.index(x): x not in sequence")

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
2024-08-21 06:36:41 +00:00
Justin Chu
e8fc1e0118 [ONNX] New export logic leveraging ExportedProgram and ONNX IR (#132530)
1/n PR to

- Move code from torch-onnx from commit 395495e566 into torch.onnx and fixes imports.
- Integrate the new export logic with the torch.onnx.export API and include basic set of tests.
- Refactor the API for the change.
- Improve documentation.

Next PRs will be more tests and docs.

Fix https://github.com/pytorch/pytorch/issues/129277
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132530
Approved by: https://github.com/titaiwangms, https://github.com/malfet
2024-08-21 01:08:42 +00:00
Sahdev Zala
06cc2e83f0 Make optim.swa.util content accessible from the torch.optim doc (#133393)
Link various classes and functions of the `optim.swa.util` to make doc content accessible from the `torch.optim` doc.

Currently, if you click the link,
https://pytorch.org/docs/stable/optim.html#module-torch.optim.swa_utils it goes to a blank, bottom of the page section of `torch.optim`.
Also,
`torch.optim.swa_utils.AveragedModel` and `torch.optim.swa_utils.SWALR` classes as well as `torch.optim.swa_utils.update_bn()` and `optim.swa_utils.get_ema_multi_avg_fn` are not linked to doc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133393
Approved by: https://github.com/janeyx99
2024-08-21 00:43:46 +00:00
PyTorch MergeBot
15b5a0b67f Revert "[RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)"
This reverts commit 71dd52f51a.

Reverted https://github.com/pytorch/pytorch/pull/133712 on behalf of https://github.com/ZainRizvi due to breaking main windows cpu tests - this stack still causes that windows test to fail ([comment](https://github.com/pytorch/pytorch/pull/133712#issuecomment-2299776241))
2024-08-20 21:14:45 +00:00
Xuehai Pan
71dd52f51a [RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.

5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)

Example:

```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...

>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
...     for i, item in enumerate(sequence):
...         if item is x or item == x:
...             return i
...     raise ValueError("sequence.index(x): x not in sequence")

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
2024-08-20 19:48:57 +00:00
PyTorch MergeBot
2bd02e0c82 Revert "[RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)"
This reverts commit 641724ed1d.

Reverted https://github.com/pytorch/pytorch/pull/133712 on behalf of https://github.com/jeanschmidt due to breaking main windows cpu tests - reverting them all, so we can identify the culprit with more calmness ([comment](https://github.com/pytorch/pytorch/pull/133712#issuecomment-2298528797))
2024-08-20 10:34:41 +00:00
PyTorch MergeBot
68570fca69 Revert "Add MaskedTensor support to *_like API (#128637)"
This reverts commit 8de56e2958.

Reverted https://github.com/pytorch/pytorch/pull/128637 on behalf of https://github.com/jeanschmidt due to Introduced API linting errors ([comment](https://github.com/pytorch/pytorch/pull/128637#issuecomment-2298270307))
2024-08-20 08:26:28 +00:00
Xuehai Pan
641724ed1d [RFC][dynamo] add decorator to register polyfill for unsupported C++ function to avoid graph break (#133712)
Add decorator `torch.compiler.substitute_in_graph` to register polyfill for unsupported C++ function to avoid graph break. This API provides an official way to add support for dynamo for third-party C extensions. Also, it can be used to simplify our implementation for `torch._dynamo.polyfill`.

5ee070266f/torch/_dynamo/variables/builtin.py (L97-L107)

Example:

```python
>>> import operator
>>> operator.indexOf([1, 2, 3, 4, 5], 3)
2

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
Unsupported: ...

>>> @torch.compiler.substitute_in_graph(operator.indexOf)
... def indexOf(sequence, x):
...     for i, item in enumerate(sequence):
...         if item is x or item == x:
...             return i
...     raise ValueError("sequence.index(x): x not in sequence")

>>> torch.compile(operator.indexOf, fullgraph=True)([1, 2, 3, 4, 5], 3)
2
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133712
Approved by: https://github.com/jansel
2024-08-19 22:14:33 +00:00
nowtryz
8de56e2958 Add MaskedTensor support to *_like API (#128637)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128637
Approved by: https://github.com/cpuhrsch
2024-08-19 22:13:59 +00:00
PyTorch MergeBot
35f36363ec Revert "[dtensor] move DTensor to public namespace (#133113)"
This reverts commit 2ee6b97464.

Reverted https://github.com/pytorch/pytorch/pull/133113 on behalf of https://github.com/wanchaol due to looks like it break some internal type imports ([comment](https://github.com/pytorch/pytorch/pull/133113#issuecomment-2295670911))
2024-08-19 05:00:19 +00:00
Wanchao Liang
2ee6b97464 [dtensor] move DTensor to public namespace (#133113)
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
  PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
  I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306
2024-08-17 05:09:52 +00:00
Mikayla Gawarecki
018e48c337 [Reland] Add wrappers for synchronous GPUDirect Storage APIs (#133489)
Reland #130633

USE_CUFILE turned off by default in this version
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133489
Approved by: https://github.com/albanD
2024-08-15 17:11:52 +00:00
Sahdev Zala
19270cff61 Add a reference for the LRScheduler class (#133243)
The `LRScheduler` class provides methods to adjusts the learning rate during optimization (as updated in this PR). Also, as a note, all the classes of lr_scheduluer are already provided in the `How to adjust learning rate` section.

Fixes #127884

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133243
Approved by: https://github.com/janeyx99
2024-08-13 16:20:22 +00:00
fduwjj
dc8bb2636c [c10d][doc] Add docs for ENV variables TORCH_NCCL_ASYNC_ERROR_HANDLING TORCH_NCCL_TRACE_CPP_STACK and TORCH_NCCL_COORD_CHECK_MILSEC (#132920)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132920
Approved by: https://github.com/fegin, https://github.com/wconstab
2024-08-09 21:08:20 +00:00
Edward Z. Yang
1f66487c69 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
2024-08-08 23:07:23 +00:00
PyTorch MergeBot
d1f73fd844 Revert "[BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)"
This reverts commit 902c6f3a19.

Reverted https://github.com/pytorch/pytorch/pull/132770 on behalf of https://github.com/ezyang due to Removed API was recommitted ([comment](https://github.com/pytorch/pytorch/pull/132770#issuecomment-2275749689))
2024-08-08 12:54:34 +00:00
Edward Z. Yang
902c6f3a19 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
ghstack dependencies: #132674, #132675, #132421, #132062, #132767, #132769
2024-08-08 12:03:25 +00:00
Edward Z. Yang
aec6332356 Only thunkify proxies in some situations (#132421)
The goal of this PR is to avoid stack overflow when we create extremely long chains of thunks, and then evaluate them (e.g., as occurs if you sum(long list of symint)). The basic idea behind this PR is to only thunkify proxies if they're being created in places where they may or may not be used--crucially, symint operations that occur in user code we are tracing are eagerly placed into the graph, even if they may eventually be dead.

I annotated the PR with explanation of changes.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132421
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #132674, #132675
2024-08-08 12:03:06 +00:00
Edward Z. Yang
361db32d47 Consolidate SymDispatchMode into ProxyTensorMode (#132674)
Instead of having a separate context variable for SymDispatchMode, we
now simply delegate to the current active proxy tensor mode when we
need to trace a SymInt.  We maintain a separate `__sym_dispatch__` magic
method as the calling convention is different than `__torch_dispatch__`.

Consolidating the modes in this ways means that we can consistently
disable both of these modes in tandem simply by removing the mode
from the proxy mode infra slot.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132674
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
2024-08-08 12:02:54 +00:00
daitian1995
aff48f7378 Autoselect default device in FSDP construction. (#127609)
There are still some differences between CUDA and non-CUDA custom devices when
construct FSDP because CUDA is selected as the default device. For example,
when construct FSDP from CPU model and device_id is not passed, device_handle
will choose CUDA as default device. This PR will autoselect the real device
as the default device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127609
Approved by: https://github.com/awgu
2024-08-08 05:25:17 +00:00
PyTorch MergeBot
a9ff190867 Revert "Consolidate SymDispatchMode into ProxyTensorMode (#132674)"
This reverts commit ffdf48e63b.

Reverted https://github.com/pytorch/pytorch/pull/132674 on behalf of https://github.com/PaliC due to We need to now revert https://github.com/pytorch/pytorch/pull/132216 in OSS and there is a dependency on this pr ([comment](https://github.com/pytorch/pytorch/pull/132674#issuecomment-2274062785))
2024-08-07 18:25:33 +00:00
PyTorch MergeBot
780310fed7 Revert "Only thunkify proxies in some situations (#132421)"
This reverts commit bb99008c9e.

Reverted https://github.com/pytorch/pytorch/pull/132421 on behalf of https://github.com/clee2000 due to I think this broke dynamo/test_subclasses.py::TestNestedTensor::test_in_graph_construction_from_input [GH job link](https://github.com/pytorch/pytorch/actions/runs/10283744685/job/28459340678) [HUD commit link](bb99008c9e).  Test got added in f50621989b which is before your merge base ([comment](https://github.com/pytorch/pytorch/pull/132421#issuecomment-2273742960))
2024-08-07 15:29:54 +00:00
Edward Z. Yang
bb99008c9e Only thunkify proxies in some situations (#132421)
The goal of this PR is to avoid stack overflow when we create extremely long chains of thunks, and then evaluate them (e.g., as occurs if you sum(long list of symint)). The basic idea behind this PR is to only thunkify proxies if they're being created in places where they may or may not be used--crucially, symint operations that occur in user code we are tracing are eagerly placed into the graph, even if they may eventually be dead.

I annotated the PR with explanation of changes.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132421
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #132674, #132675
2024-08-07 11:51:17 +00:00
Edward Z. Yang
ffdf48e63b Consolidate SymDispatchMode into ProxyTensorMode (#132674)
Instead of having a separate context variable for SymDispatchMode, we
now simply delegate to the current active proxy tensor mode when we
need to trace a SymInt.  We maintain a separate `__sym_dispatch__` magic
method as the calling convention is different than `__torch_dispatch__`.

Consolidating the modes in this ways means that we can consistently
disable both of these modes in tandem simply by removing the mode
from the proxy mode infra slot.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132674
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
2024-08-06 17:03:17 +00:00
Wouter Devriendt
e8645fa2b9 [Doc] fix some typos (found by codespell and typos) (#132544)
Applying doc fixes from PR https://github.com/pytorch/pytorch/pull/127267 - with CLA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132544
Approved by: https://github.com/kit1980
2024-08-05 17:21:56 +00:00
Xuehai Pan
4226ed1585 [BE] Format uncategorized Python files with ruff format (#132576)
Remove patterns `**`, `test/**`, and `torch/**` in `tools/linter/adapters/pyfmt_linter.py` and run `lintrunner`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132576
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #132574
2024-08-04 17:13:31 +00:00
Syed Tousif Ahmed
7c89ec0f7c Implements torch.cuda.MemPool() API (#131152)
In this PR:
- Pool id creation logic is refactored and moved to a MemPool class. `graph_pool_handle()` API now uses `torch.cuda.MemPool()` to get a unique id for a pool. Existing tests should cover this change.
- MemPool holds a pointer to a CUDAAllocator as proposed in https://github.com/pytorch/pytorch/issues/124807#issuecomment-2077506997. Tests are added to show usage with CUDAPluggableAllocator.
- MemPoolContext API makes a mempool active. Tests are added to show usage of this API. This API will be used in CUDACachingAllocator to route allocations to a user provided allocator. See draft here: https://github.com/pytorch/pytorch/pull/125722/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131152
Approved by: https://github.com/eqy, https://github.com/ezyang
2024-08-01 01:29:30 +00:00
Luca Wehrstedt
f4f7aba75d Expose function to probe whether PyTorch was built with FlashAttention (#131894)
This is needed by downstream projects (e.g., xFormers) to determine whether they can count on FlashAttention in PyTorch or whether they need to build it themselves.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131894
Approved by: https://github.com/drisspg, https://github.com/eqy
2024-07-31 11:33:09 +00:00
ekamiti
9e473fd868 Make adding Buffers more like adding Parameters (#125971)
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new Buffer class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the register_buffer method has not been changed. The persistent parameter in the Buffer type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new Buffer type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the Buffer type can be used as a drop in replacement for register_buffer as it just leads to register_buffer being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.

Fixes #35735

Co-authored-by: Mikayla Gawarecki <mikaylagawarecki@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125971
Approved by: https://github.com/albanD, https://github.com/anijain2305, https://github.com/mlazos
2024-07-31 10:32:40 +00:00
Simon Mahns
dcb03106b7 [Land Internally] MTIA equivalent of torch.cuda.memory_stats (#132007)
Summary: as title

Test Plan: pytorch ci failing: https://github.com/pytorch/pytorch/issues/131962

Differential Revision: D60335413

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132007
Approved by: https://github.com/hanzlfs, https://github.com/egienvalue
2024-07-29 20:47:18 +00:00
PyTorch MergeBot
eb9409511e Revert "support zb1p and zb2p algorithms (#130752)"
This reverts commit 8fe5b93667.

Reverted https://github.com/pytorch/pytorch/pull/130752 on behalf of https://github.com/atalman due to Broke Periodic CI: distributed/pipelining/test_composability.py::ComposabilityTest::test_manual_with_data_parallel_dp_type_DDP_ScheduleClass4 [GH job link](https://github.com/pytorch/pytorch/actions/runs/10131472868/job/28014900187) [HUD commit link](8fe5b93667) ([comment](https://github.com/pytorch/pytorch/pull/130752#issuecomment-2255819078))
2024-07-29 12:40:00 +00:00
PyTorch MergeBot
e191b83462 Revert "Add wrappers for synchronous GPUDirect Storage APIs (#130633)"
This reverts commit 709ddf7a9d.

Reverted https://github.com/pytorch/pytorch/pull/130633 on behalf of https://github.com/clee2000 due to still failing internally D60265673 ([comment](https://github.com/pytorch/pytorch/pull/130633#issuecomment-2253239607))
2024-07-26 18:08:20 +00:00
PyTorch MergeBot
b343644f3a Revert "MTIA equivalent of torch.cuda.memory_stats (#131673)"
This reverts commit 513ce5f69a.

Reverted https://github.com/pytorch/pytorch/pull/131673 on behalf of https://github.com/clee2000 due to linked internal diff has internal changes, not sure what happened here, but this shouldn't have been merged externally without also merging the internal diff ([comment](https://github.com/pytorch/pytorch/pull/131673#issuecomment-2251749644))
2024-07-26 00:54:37 +00:00
Mikayla Gawarecki
709ddf7a9d Add wrappers for synchronous GPUDirect Storage APIs (#130633)
Based in part on https://github.com/NVIDIA/apex/pull/1774

Differential Revision: [D60155434](https://our.internmc.facebook.com/intern/diff/D60155434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130633
Approved by: https://github.com/albanD
2024-07-25 22:23:38 +00:00
Simon Mahns
513ce5f69a MTIA equivalent of torch.cuda.memory_stats (#131673)
Summary: Adding MTIA equivalent of `torch.cuda.memory_stats`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131673
Approved by: https://github.com/egienvalue
2024-07-25 21:59:59 +00:00
Yanbo Liang
a34692c0a3 [Inductor] Added and_masks and or_masks utilities & make fully masked out rows 0 instead of nan (#131552)
Combine #131073 and #131012 and fix doc building failures.

Co-authored-by: chilli <chilli@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131552
Approved by: https://github.com/Chillee
2024-07-25 21:29:46 +00:00
Mikayla Gawarecki
c3d099ddd1 [BE][Easy] Add hooks to doc for Optimizer base class (#131628)
Happened to notice this was missing from the base class (but is rendering for the other optimizers like Adam etc.) when I wanted to link the state_dict hooks for https://discuss.pytorch.org/t/global-not-per-param-optimizer-state/206769

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131628
Approved by: https://github.com/janeyx99
2024-07-25 15:07:08 +00:00
Jane Xu
9c4cf866c2 Adafactor forloop basic impl (#129905)
#109581

At this point, the vanilla implementation (the default) is good.
Docs: https://docs-preview.pytorch.org/pytorch/pytorch/129905/generated/torch.optim.Adafactor.html#torch.optim.Adafactor

Specifically, the impl in this PR, which attempts to replicate the paper,
```
optim = torch.optim.Adafactor([weight])
```
is close enough to https://pytorch-optimizers.readthedocs.io/en/latest/optimizer/#pytorch_optimizer.AdaFactor
```
optim_c = AdaFactor([weight], betas=(0, 0.999), scale_parameter=False)
```
is close enough to https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adafactor
```
optim = keras.optimizers.Adafactor(learning_rate=0.01)
```

The three results respectively for the same randomly generated weights:
```
# ours
tensor([[ 0.3807594, -0.3912092],
        [ 0.0762539,  0.5377805],
        [ 0.2459473,  0.4662207]])

# pytorch-optimizer
tensor([[ 0.3807592, -0.3912172],
        [ 0.0762507,  0.5377818],
        [ 0.2459457,  0.4662213]])

# keras
array([[ 0.38076326, -0.39121315],
        [ 0.0762547 ,  0.5377859 ],
        [ 0.24594972,  0.46622536]], dtype=float32)
```

This gives me confidence to move forward in speeding up the implementation now that a baseline has been established. If you're curious about differences:
* keras assigns step_size (rho_t in their code) to `min(lr, 1 / sqrt(step)` whereas the OG impl uses a hardcoded 0.01 instead of lr. We do the same thing as keras, but our lr default is 0.01.
* We differ from the pytorch-optimizers default in that our default will not track momentum (thus `beta1=0`) and we do not apply parameter scaling.

<details>

Keras collab: https://colab.research.google.com/drive/1i3xF8ChL7TWKJGV_5v_5nMhXKnYmQQ06?usp=sharing

My script repro:

```
import torch
from pytorch_optimizer import AdaFactor
torch.set_printoptions(precision=7)

weight = torch.tensor([[ 0.37697506, -0.39500135],
        [ 0.07246649,  0.53399765],
        [ 0.24216151,  0.46243715]], dtype=torch.float32)
# bias = torch.tensor([0, 0], dtype=torch.float32)

weight.grad = torch.tensor([[-0.5940447, -0.7743838],
        [-0.5940447, -0.7743838],
        [-0.5940447, -0.7743838]], dtype=torch.float32)
# bias.grad = torch.tensor([-2.5027974,  1.5422692], dtype=torch.float32)

weight_c = weight.clone()
weight_c.grad = weight.grad.clone()

optim = torch.optim.Adafactor([weight])
optim.step()
print(weight)

optim_c = AdaFactor([weight_c], betas=(0, 0.999), scale_parameter=False)
optim_c.step()
print(weight_c)
```

<details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129905
Approved by: https://github.com/albanD
2024-07-25 13:17:19 +00:00
Haoci Zhang
8fe5b93667 support zb1p and zb2p algorithms (#130752)
Previously, we have proved that ZB2P is not truly zero bubble when num_local_stages exceed 4 and so only ZB1P was supported.

We did a few tweaks to the ZB2P to really make it zero bubble. Algorithm and proof is attached.
[zero_bubble.pdf](https://github.com/user-attachments/files/16238738/zero_bubble.pdf)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130752
Approved by: https://github.com/H-Huang
2024-07-24 17:58:46 +00:00
Jun Luo
abb313b466 [torch.mtia] Noop set_rng_state and get_rng_state APIs (#130873)
Summary: As title

Test Plan: CI tests

Reviewed By: joebos

Differential Revision: D59036602

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130873
Approved by: https://github.com/hanzlfs
2024-07-24 01:52:21 +00:00
Shangdi Yu
68c725a094 [custom ops] Add register_vmap for custom ops (#130589)
Fixes #130284
Fixes #130653

- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
2024-07-23 17:48:38 +00:00
PyTorch MergeBot
e4b5645f83 Revert "Add wrappers for synchronous GPUDirect Storage APIs (#130633)"
This reverts commit 5b5e0698a5.

Reverted https://github.com/pytorch/pytorch/pull/130633 on behalf of https://github.com/clee2000 due to breaking a lot of jobs and build rules internally D60085885, possibly needs to update some bazel build? ([comment](https://github.com/pytorch/pytorch/pull/130633#issuecomment-2245806738))
2024-07-23 17:19:34 +00:00
PyTorch MergeBot
b435d84261 Revert "[custom ops] Add register_vmap for custom ops (#130589)"
This reverts commit 074b420641.

Reverted https://github.com/pytorch/pytorch/pull/130589 on behalf of https://github.com/atalman due to Please fix lint and reland ([comment](https://github.com/pytorch/pytorch/pull/130589#issuecomment-2244092174))
2024-07-23 01:44:44 +00:00
Shangdi Yu
074b420641 [custom ops] Add register_vmap for custom ops (#130589)
Fixes #130284
Fixes #130653

- Add `torch.library.register_vmap` to custom ops
- Add `register_vmap` for operators in ops in custom_op_db.
- Make `torch.autograd.Function` support kwarg-only kwargs for vmap
- test operators in op_db with `tests/test_vmap`.
- change `test_vmap` to allow custom `out_dim` and allow "None" in `out_dim` when testing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130589
Approved by: https://github.com/zou3519
2024-07-23 00:54:52 +00:00
Mikayla Gawarecki
5b5e0698a5 Add wrappers for synchronous GPUDirect Storage APIs (#130633)
Based in part on https://github.com/NVIDIA/apex/pull/1774

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130633
Approved by: https://github.com/albanD
2024-07-22 14:51:24 +00:00
PyTorch MergeBot
26383a6cc0 Revert "Added and_masks and or_masks utilities (#131073)"
This reverts commit 92bb323d36.

Reverted https://github.com/pytorch/pytorch/pull/131073 on behalf of https://github.com/albanD due to The docs build fails here and in trunk ([comment](https://github.com/pytorch/pytorch/pull/131073#issuecomment-2242997958))
2024-07-22 13:44:55 +00:00
chilli
92bb323d36 Added and_masks and or_masks utilities (#131073)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131073
Approved by: https://github.com/drisspg
ghstack dependencies: #130871, #130904
2024-07-22 11:48:03 +00:00
Soumith Chintala
8e478d4fb1 Add Alban and Piotr into Core Maintainers (#130903)
See official announcement here: https://dev-discuss.pytorch.org/t/alban-desmaison-and-piotr-bialecki-are-now-pytorch-core-maintainers/2280

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130903
Approved by: https://github.com/albanD, https://github.com/Skylion007
2024-07-20 16:02:42 +00:00
Li-Huai (Allan) Lin
125be005eb [Docs] Fix fake tensor doc (#131205)
Fix this: `# AttributeError: 'FakeTensorMode' object has no attribute 'from_real_tensor'`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131205
Approved by: https://github.com/eellison
2024-07-19 17:59:45 +00:00
Jerry Zhang
793b17ebcb Add numeric_debugger top level APIs (#130643)
Summary:
Add three top level APIs for numeric debugger in pt2e flow that can log intermediate output in the model
and calculate summary for metric comparisons between nodes in two graphs

* `prepare_for_propagation_comparison`
* `extract_results_from_loggers`
* `compare_results`

Test Plan:
python test/test_quantization.py -k test_prepare_for_propagation_comparison
python test/test_quantization.py -k test_extract_results_from_loggers

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130643
Approved by: https://github.com/dulinriley, https://github.com/tarun292
2024-07-18 20:54:18 +00:00
redwrasse
63a0a65df9 Define 'zero-preserving unary functions' in docs (#130804)
Make explicit the definition of 'zero-preserving unary functions' in the sparse tensors documentation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130804
Approved by: https://github.com/soulitzer
2024-07-18 13:30:29 +00:00
drisspg
2b43d339fe Make FlexAttention API public (#130755)
# Summary

Makes the prototype API flex_attention public

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130755
Approved by: https://github.com/Chillee
2024-07-16 16:21:25 +00:00
Xuehai Pan
a3abfa5cb5 [BE][Easy][1/19] enforce style for empty lines in import segments (#129752)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129752
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-07-16 00:42:56 +00:00
Jerry Zhang
b893aa71ca Rename generate_numeric_debug_handle to numeric_debugger (#130590)
Summary:
att

Test Plan:
CI

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130590
Approved by: https://github.com/dulinriley, https://github.com/tarun292
2024-07-15 22:42:27 +00:00
Yu, Guangye
7cd48df2da Refine the logic of device construction when only device index is given (#129119)
# Motivation
Before this PR, device construction was `cuda` type when only a device index was given. It also returns the `PrivateUser1` type if a `PrivateUser1` type is registered.
```bash
>>> import torch
>>> device = torch.device(0)
>>> device.type
'cuda'
>>> a = torch.tensor([1, 2])
>>> b = a.to(0)
>>> b
tensor([1, 2], device='cuda:0')
```
It works well on CUDA GPU. But it will raise unexpected information and error running on XPU.
```bash
>>> import torch
>>> device = torch.device(0)
>>> device.type
'cuda'
>>> a = torch.tensor([1, 2])
>>> b = a.to(0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/xxx/pytorch/torch/cuda/__init__.py", line 302, in _lazy_init
    raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled
```
With this PR, refine the logic to use the currently available device type instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129119
Approved by: https://github.com/albanD, https://github.com/gujinghui, https://github.com/EikanWang
ghstack dependencies: #129463, #129205, #129363
2024-07-15 14:34:29 +00:00
Yu, Guangye
9cae2160f5 Introduce the concept of Accelerators to PyTorch doc (#129363)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129363
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/albanD
ghstack dependencies: #129463, #129205
2024-07-15 14:24:46 +00:00
Mikayla Gawarecki
7c289c2a5c Add torch.serialization.safe_globals context manager (#127939)
Add context manager mentioned in https://github.com/pytorch/pytorch/pull/127808#pullrequestreview-2096298486

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127939
Approved by: https://github.com/albanD
2024-07-12 20:38:43 +00:00
rzou
9c69684af8 [custom_ops] expose torch.library.register_torch_dispatch (#130261)
This is the API for defining the interaction between a torch_dispatch
class and a custom op. Taking API bikeshedding.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130261
Approved by: https://github.com/albanD
ghstack dependencies: #130064
2024-07-12 14:13:01 +00:00
Shangdi Yu
fb9bc6d74a [custom op] add doc for CustomOpDef.set_kernel_enabled (#130406)
<img width="1067" alt="Screenshot 2024-07-09 at 6 14 55 PM" src="https://github.com/pytorch/pytorch/assets/22356083/941751f8-8e12-43cb-8477-c739476e0096">
<img width="965" alt="Screenshot 2024-07-09 at 6 14 59 PM" src="https://github.com/pytorch/pytorch/assets/22356083/aa9be099-f26c-45a3-8a14-742a2bb7c28b">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130406
Approved by: https://github.com/zou3519
2024-07-11 15:47:35 +00:00
Shangdi Yu
a4576dad34 [reland][custom ops] infer schema (#130079)
Fixes #129617

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130079
Approved by: https://github.com/zou3519
2024-07-11 03:39:07 +00:00
PyTorch MergeBot
86bca69c5f Revert "[custom_ops] expose torch.library.register_torch_dispatch (#130261)"
This reverts commit bb9a73f767.

Reverted https://github.com/pytorch/pytorch/pull/130261 on behalf of https://github.com/izaitsevfb due to depends on #130064 which needs to be reverted ([comment](https://github.com/pytorch/pytorch/pull/130261#issuecomment-2221569707))
2024-07-10 21:43:28 +00:00
PyTorch MergeBot
e14a0f45ed Revert "[reland][custom ops] infer schema (#130079)"
This reverts commit bef085bdfa.

Reverted https://github.com/pytorch/pytorch/pull/130079 on behalf of https://github.com/izaitsevfb due to depends on #130064 which needs to be reverted ([comment](https://github.com/pytorch/pytorch/pull/130079#issuecomment-2221561483))
2024-07-10 21:40:16 +00:00
Shangdi Yu
bef085bdfa [reland][custom ops] infer schema (#130079)
Fixes #129617

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130079
Approved by: https://github.com/zou3519
2024-07-10 16:18:36 +00:00
cyy
85b8503621 [Caffe2] Remove Caffe2 documentation (#130089)
Due to the removal of Caffe2 code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130089
Approved by: https://github.com/r-barnes, https://github.com/albanD
2024-07-10 00:52:16 +00:00
rzou
bb9a73f767 [custom_ops] expose torch.library.register_torch_dispatch (#130261)
This is the API for defining the interaction between a torch_dispatch
class and a custom op. Taking API bikeshedding.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130261
Approved by: https://github.com/albanD
ghstack dependencies: #130064
2024-07-09 21:11:27 +00:00
Yuanhao Ji
312652c325 [RFC] Add support for device extension autoloading (#127074)
Fixes #122468

- Load device extensions at the end of `torch/__init__.py`
- Enabled by default, or you can disable it with `TORCH_DEVICE_BACKEND_AUTOLOAD=0`

run test:

```python
python test/run_test.py -i test_autoload_enable
python test/run_test.py -i test_autoload_disable
```

doc:

https://docs-preview.pytorch.org/pytorch/pytorch/127074/miscellaneous_environment_variables.html

co-author:  @jgong5 @bsochack @bkowalskiINTEL @jczaja @FFFrog @hipudding

Co-authored-by: albanD <desmaison.alban@gmail.com>
Co-authored-by: Jiong Gong <jiong.gong@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127074
Approved by: https://github.com/albanD, https://github.com/jgong5
2024-07-09 06:14:13 +00:00
PyTorch MergeBot
44a773c121 Revert "[custom ops] infer schema (#130079)"
This reverts commit 3fe324ffb6.

Reverted https://github.com/pytorch/pytorch/pull/130079 on behalf of https://github.com/huydhn due to The test_public_bindings failure looks legit 3fe324ffb6 ([comment](https://github.com/pytorch/pytorch/pull/130079#issuecomment-2215420957))
2024-07-08 22:02:29 +00:00
Shangdi Yu
3fe324ffb6 [custom ops] infer schema (#130079)
Fixes #129617

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130079
Approved by: https://github.com/zou3519
2024-07-08 20:46:23 +00:00
Kurt Mohler
e590168865 Enable sharing meta tensors between processes (#129520)
Fixes #129436

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129520
Approved by: https://github.com/ezyang
2024-07-04 20:29:48 +00:00
Li-Huai (Allan) Lin
42f3d7e948 [MPS] Add mps profiler env vars to docs (#129552)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129552
Approved by: https://github.com/malfet
ghstack dependencies: #129451
2024-07-04 06:44:48 +00:00