Summary:
When a C++ custom op returns an uninitialized tensor, it will be marked as None in Python. For this scenario, the user should mark the possibly uninitialized return as Tensor? in the custom op schema.
This diff adds `as_optional_tensor` type to export schema and the support for optional tensor in AOTI proxy executor.
Test Plan:
```
buck2 run mode/dev-nosan caffe2/test/inductor:test_aot_inductor_custom_ops -- -r test_fn_with_optional_tensor_output
```
Differential Revision: D75262529
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154286
Approved by: https://github.com/desertfire
This is a short circuit, that we should not fail on. Before this PR we would not fail on u0, u0+u1,
only if they are size like. but we will fail on u0-u1.. etc for no need.
guard_or_false seems appropriate for that reason.
This was added in https://github.com/pytorch/pytorch/pull/122145 there was no unit tests for me to verify
why it was added, i could not repo using the associated issue , the example does not work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154167
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #154154, #154164
Two error messages in the codebase instruct the user to use `Tendor.dense()`. This method doesn't exist, but `Tensor.to_dense()` does, and this is what the user should be using instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152631
Approved by: https://github.com/jansel
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Differential Revision: [D72987485](https://our.internmc.facebook.com/intern/diff/D72987485/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
Summary: Added a field `protocol` to `ExternKernelNodes` and all the lowering pass will always use the oss schema to serialize external kernel nodes from now on.
Test Plan: CI
Differential Revision: D72020444
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150197
Approved by: https://github.com/zhxchen17
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.
The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.
The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
Fixes#148208. There are solutions for exposing symbols implicitly from inline functions (i.e., inline function A calls non-inline function B in foo.h. Code includes foo.h has to see the symbol B in DLL).
Solution 1: tag the entire struct where the inline functions are defined as member functions with TORCH_PYTHON_API --- this PR does this for python_arg_parser.h. An alternative solution exists but will slow down dispatching a lot --- drop inline keyword and move implementation to .cc file.
Solution 2: tag individual functions with TORCH_PYTHON_API. This PR does this for python_tensor.h.
Related discussion about hiding torch_python symbols: https://github.com/pytorch/pytorch/pull/142214
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148213
Approved by: https://github.com/malfet
Summary:
Continuing the work from https://github.com/pytorch/pytorch/pull/146427
Adds the `torch.float8_e8m0fnu` dtype to PyTorch, as detailed in
https://github.com/pytorch/pytorch/issues/146414 . Please see the issue for a detailed definition of the format. Example of basic functionality:
```python
import torch
# round trip
x0 = torch.randn(4, 4, dtype=torch.float32)
x1 = x0.to(torch.float8_e8m0fnu) # RNE rounding
x2 = x1.to(torch.float32) # 2 ** exponent
# creation with empty
x0 = torch.empty(4, 4, dtype=torch.float8_e8m0fnu)
# printing
print(x0)
```
Done in this PR:
* numerical correctness
* op coverage (except for `torch._scaled_mm`): create tensor, cast to/from float32
* printing a tensor works
For future PRs:
* performance optimizations for casting
* torch._scaled_mm
* PT2
* various cleanups (detailed in comments with issue numbers)
Test Plan:
```
pytest test/quantization/core/experimental/test_float8.py -s
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147466
Approved by: https://github.com/drisspg
Summary:
Generate two helper functions for enum classes in generated_serialization_types.h
printEnum: will convert enum values into strings.
parseEnum: will convert strings into enum values.
Test Plan: CI
Differential Revision: D69604850
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147126
Approved by: https://github.com/yiming0416
Summary: Currently inf is serialized as Infinity in JSON which is not standard compliant. Instead we will tweak all special floating points into strings and handle them at json layer.
Test Plan:
see D69060784
CI
Differential Revision: D69186425
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146490
Approved by: https://github.com/yiming0416
If a user passes in a namedtuple as an input, currently the input TreeSpec looks like: `TreeSpec(type=namedtuple, context=”class_fqn”, children_spec=[*, *])`
The user then saves the program containing this input TreeSpec. But what happens if they load it in a new environment where `class_fqn` now contains an additional field?
This means that the exported program is now expected to take in another input. But since those fields were not used in the original program, users should be able just drop those additional fields and the program will run successfully. This is needed/used in APS where they use unflattener's adapter to adapt the inputs based on the previously saved treespecs.
There are a couple of [solutions](https://docs.google.com/document/d/1V4ZSdy-8PUISWc8RqvGu3DU01BVegJhHHPWqa1Io7Eg/edit?tab=t.0) for how we can address this, but eventually we settled on saving a side table mapping namedtuple types to their list of field names, which can then be accessed by the adapter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145956
Approved by: https://github.com/zhxchen17
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element.
Test Plan:
```
buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond
buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2
```
Differential Revision: D66991624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227
Approved by: https://github.com/zhxchen17