Summary:
Serialization contains utilities to deserialize a graph saved on disk in json format as defined in `torch/csrc/utils/generated_serialization_types.h` to the in-memory representation as defined in `torch/nativert/graph/Graph.h`
Test Plan:
buck2 run @mode/dev-nosan caffe2/test/cpp/nativert:serialization_test
Rollback Plan:
Differential Revision: D76012641
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155229
Approved by: https://github.com/zhxchen17
This is the start of a series of efforts to consolidating auxiliary threads in PGNCCL, aka watchdog and heartbeat_monitoring threads. Right now we launch these two threads per PG instances, i.e., if users create hundred or thousand instances of PG or subPGs, we will end up with that twice many side threads which is not efficient. We have a RFC to consolidate them (https://github.com/pytorch/pytorch/issues/146956). Right now both threads are assigned with so many functionalities so it is hard to do the consolidations in one shot, we will try to split it into at least two steps (PRs) to make it easier to test and review.
We did our first attemp in https://github.com/pytorch/pytorch/pull/153668 but we also want to try to see if we can make monitoring thread a class. This PR is doing the first step to make monitoring thread a class. The next step to also extract watchdog to be a separate class so that we know its dependency.
What we did in this PR:
1. Move all related variables and methods into a class named `HeartbeatMonitor`.
2. Correct some errors in the original logics inside monitoring thread loop.
3. Move the error propagation check to watchdog thread which is more relevant. This is totally fine since we rolled out EventCache out fully so watchdog hang is rare now.
Today there are two major functions inside heartbeat monitoring thread today:
1. Check the heartbeat of watchdog thread every 8 minutes. If no heartbeat detected and we are sure monitoring thread has not been stopped, we will kill the program by SIG_ABORT.
2. We check TCPStore every 30 sec to see if any watchdog timeout happens on other ranks, if so we will initiate a dump signal on the current rank as well. (We do this only in the default PG)
Differential Revision: [D75799278](https://our.internmc.facebook.com/intern/diff/D75799278)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153977
Approved by: https://github.com/kwen2501, https://github.com/d4l3k
We split the large PR for adding Graph.h and Graph.cpp to nativert into 3 smaller PRs:
1. Add header file
2. Add source file
3. **Add test and build rules**
Torch Native Runtime RFC: https://github.com/pytorch/rfcs/pull/72
4 classes have been introduced: `Graph`, `Node`, `Value`, `Type`
- `Type` represents the kind of a `Value`
- `Value` represents a single symbolic value, it could be any kind that exists in `Type`. Values are inputs and outputs of a `Node`.
- `Node` represents a single unit of execution, typically a PyTorch op.
- `Graph` represents a model's computation graph, which is designed to facilitate transformation/analysis.
Differential Revision: [D75495273](https://our.internmc.facebook.com/intern/diff/D75495273/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154532
Approved by: https://github.com/SherlockNoMad
ghstack dependencies: #154530, #154531
Summary: The goal of this PR and future follow-up PRs is to group a set of header files required by AOTInductor Standalone in a separate directory, ensuring they are implemented in a header-only manner.
Test Plan: CI
Bifferential Revision: D75756619
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154850
Approved by: https://github.com/janeyx99
This is the start of a series of efforts to consolidating auxiliary threads in PGNCCL, aka watchdog and heartbeat_monitoring threads. Right now we launch these two threads per PG instances, i.e., if users create hundred or thousand instances of PG or subPGs, we will end up with that twice many side threads which is not efficient. We have a RFC to consolidate them (https://github.com/pytorch/pytorch/issues/146956). Right now both threads are assigned with so many functionalities so it is hard to do the consolidations in one shot, we will try to split it into at least two steps (PRs) to make it easier to test and review.
We did our first attemp in https://github.com/pytorch/pytorch/pull/153668 but we also want to try to see if we can make monitoring thread a class. This PR is doing the first step to make monitoring thread a class. The next step to also extract watchdog to be a separate class so that we know its dependency.
What we did in this PR:
1. Move all related variables and methods into a class named `HeartbeatMonitor`.
2. Correct some errors in the original logics inside monitoring thread loop.
3. Move the error propagation check to watchdog thread which is more relevant. This is totally fine since we rolled out EventCache out fully so watchdog hang is rare now.
Today there are two major functions inside heartbeat monitoring thread today:
1. Check the heartbeat of watchdog thread every 8 minutes. If no heartbeat detected and we are sure monitoring thread has not been stopped, we will kill the program by SIG_ABORT.
2. We check TCPStore every 30 sec to see if any watchdog timeout happens on other ranks, if so we will initiate a dump signal on the current rank as well. (We do this only in the default PG)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153977
Approved by: https://github.com/kwen2501, https://github.com/d4l3k
Summary:
Torch Native Runtime RFC: https://github.com/pytorch/rfcs/pull/72
Added an in-memory representation for input and output specs of a graph. The GraphSignature class models the input and output specs of an exported graph produced by torch.export, which holds the graph information deserialized from the pt2 archive package. Runtime relies on the GraphSignature for weight name lookup and weight loading.
The serialization schema is defined in torch/_export/serde/schema.py
See more at: https://docs.pytorch.org/docs/stable/export.html#torch.export.ExportGraphSignature
Test Plan: Added tests under `test/cpp/nativert/test_graph_signature.cpp`
Differential Revision: D73895378
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152969
Approved by: https://github.com/swolchok
Summary:
Torch Native Runtime RFC: https://github.com/pytorch/rfcs/pull/72
This diff moves `TensorMeta.cpp` and `TensorMeta.h` to PyTorch core under `torch/nativert/graph/`
Existing `torch::_export::TensorMeta` in `torch/csrc/utils/generated_serialization_types.h` is auto-generated from the export serde schema and therefore only containing the most basic serializable types. We need the newly added `TensorMeta.cpp` to deserialize the metadata into a in-memory class with c10 types so that it can be consumed by the runtime later.
Test Plan:
Added test under `test/cpp/nativert/test_tensor_meta.cpp`
Differential Revision: D73820548
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152475
Approved by: https://github.com/albanD
This is my suggestion for resolving #152087
This PR extends the constructor of `AOTIModelPackageLoader` with an (optional) device index. The device type is still determined by `metadata_["AOTI_DEVICE_KEY"]`, but the `device_index` argument can be used to move an AOTI model package to different devices like `cuda:0`, `cuda:1`, ... in a convenient way. AFAIK, this is not possible so far using `AOTIModelPackageLoader` alone. The default case (no device index specified) with `metadata_["AOTI_DEVICE_KEY"] == "cuda"` would lead to the current behavior, i.e., the model is loaded to device `cuda`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152093
Approved by: https://github.com/desertfire
When bicubic interpolation was added to grid_sampler in #44780, `GridSampleFuncOptions` was not updated to allow a user to use bicubic mode in LibTorch, even though the function could handle it. This PR fixes the parity such that LibTorch's `torch::nn::functional::grid_sample` behaves the same as PyTorch's `torch.nn.functional.grid_sample`.
Existing users can directly use `torch::grid_sampler` but must know what int to pass for the interpolation (2 for bicubic) and padding mode parameters, which is not ideal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150817
Approved by: https://github.com/Skylion007
Summary:
We add states in the constant folding process for AOTInductor.
Basically, there's 3 states, which is
(1) None: The state when no constants are loaded and uninitialized.
(2) Initialized: The state when constants are loaded, but not yet
folded.
(3) Folded: The state where the model is fully ready with folded
constants.
Note that even if constant folding is not enabled, we still only run
when state is FOLDED, this is okay because without constant folding, the
transition from INITIALIZED to FOLDED is just a pass-throught.
Test Plan:
python test/inductor/test_aot_inductor.py -k test_constant_folding_with_update
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D73002538](https://our.internmc.facebook.com/intern/diff/D73002538)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151273
Approved by: https://github.com/jingsh, https://github.com/desertfire
This PR implements _allgather_base, reduce_scatter, and _reduce_scatter_base in the MPI backend (ProcessGroupMPI), enabling support for Fully Sharded Data Parallel (FSDP) in environments that use MPI for distributed communication.
### Context
As noted in https://github.com/pytorch/pytorch/issues/85628, FSDP currently supports only the NCCL backend. Due to this limitation, FSDP cannot run on legacy HPC environments or clusters that rely on MPI.
By implementing just these three collective operations, we can enable FSDP to work with the MPI backend. These collectives are implemented in a similar manner to existing operations such as allgather.
### Testing
We validated this PR using pytorch/build/bin/ProcessGroupMPITest with OpenMPI, and all tests passed successfully.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150162
Approved by: https://github.com/H-Huang
While fixing the memory leak in https://github.com/pytorch/pytorch/pull/145757, we accidentally close the socket for the case when nread == 0 and thought it is the case when connection is closed. This is not true. According to libuv doc: https://docs.libuv.org/en/v1.x/stream.html#c.uv_read_cb.
> nread might be 0, which does not indicate an error or EOF. This is equivalent to EAGAIN or EWOULDBLOCK under read(2).
We found this bug when debugging a broken pipe issue when users first call a set and then wait for all keys right afterwards on 128 ranks. This might also cause other broken pipe issues we have seen in the prod jobs recently.
Added a unit test to test this case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150987
Approved by: https://github.com/d4l3k, https://github.com/XilunWu
Summary:
We add the functionality to allow users to directly pass in a at::Tensor
into AOTInductor, that would be used as the constant.
This user managed buffer skips the copying step in AOTInductor, and let
users to directly manage the memory usage themselve.
Test Plan:
LD_LIBRARY_PATH=/data/users/$USER/pytorch/build/lib
/data/users/$USER/pytorch/build/bin/test_aoti_inference
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D72589514](https://our.internmc.facebook.com/intern/diff/D72589514)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150276
Approved by: https://github.com/chenyang78, https://github.com/desertfire
Summary:
Profiler side of memory snapshot.
1. Add API to actually do snapshot when client interface is called
2. Add ifdefs to builds so that kineto hooks snapshot correctly.
Design Philosophy: There is one interesting part of this implementation and it is during export. For export we are callign the python impl of the export rather than CPP even though we are already in CPP. This is because it is better to simply have one path of export rather than 2. Personally, I want there to be parity between auto-trace and on-demand so it if we can limit the side paths then we will have an easier time maintaining this relationship
Test Plan: {F1976563426}
Reviewed By: sanrise
Differential Revision: D70733247
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150559
Approved by: https://github.com/sanrise
operations
Summary:
Fix the test for memory tracking. This PR does:
(1) Add tracking before and after for all memory-related operations.
Make sure the operation do indeed captures memory both in CUDA and
torch's CUDACachAllocator Make sure the operation do indeed captures
consumed memory both in CUDA and torch's CUDACachAllocator.
(2) Keep track of memory being reserved by CUDACacheAllocator in
torch and it's relationship with global CUDA memory consumption.
Test Plan:
This PR is adding tests.
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150269
Approved by: https://github.com/jingsh, https://github.com/chenyang78, https://github.com/desertfire
Relanding #148590 due to merge conflict.
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Squashed contents:
* [ptd][nccl] use current-stream as nccl-stream under async=False mode (#147820)
PTD current workflow:
- PTD creates its own dedicated `ncclStream` for comm operation
- it will first add a dependency on current-stream (typically the compute stream) to ensure tensors are ready before invoking collective
such stream synchronization become expensive in Inference world (cpu overhead: 70us vs GPU kernel time: 160us).
This diff:
- async=False [default], will use current-stream as nccl-stream and avoid the stream-sync overhead
- async=True, will retain existing logic: create new nccl-stream, let it wait on current-stream to ensure tensors are ready
- pass down async from c10d down to NCCL-PG
this helps shave off 50% CPU overhead **(70us -> 35us)**, which reduce total CPU/GPU from **230us to 195us by 15%**
* [PGNCCL] Make avoid-record-stream default
* [c10d] Add asyncOp argument to Ops
* Change python side wait
* Pass asyncOp at ProcessGroup level
* Watchdog unstashing tensors as a safety net
* Stash tensors for reduce_scatter_v and all_gather_v
Pull Request approved: https://github.com/pytorch/pytorch/pull/149753
* [c10d] Move unstashing from watchdog to main thread
Pull Request approved: https://github.com/pytorch/pytorch/pull/150079
* [PGNCCL][BE] Merge mutex into TensorShelf for encapsulation
Pull Request approved: https://github.com/pytorch/pytorch/pull/150130
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150398
Approved by: https://github.com/atalman
Summary: Add extract_constant_map that allows users to inspect the constants being used by AOTInductor
Test Plan:
`python test/inductor/test_aot_inductor.py -k extract_constants_map`
`LD_LIBRARY_PATH=/data/users/$USER/pytorch/build/lib /data/users/$USER/pytorch/build/bin/test_aoti_inference`
Differential Revision: D72020400
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150163
Approved by: https://github.com/chenyang78
internally.
Summary:
This diff allows freeing the usage of folded constants that's created by
AOTInductor through CUDACachingAllocator instead of the constant blob
from cudaMalloc directly.
Test Plan:
LD_LIBRARY_PATH=/data/users/$USER/pytorch/build/lib
/home/$USER/local/pytorch/build/bin/test_aoti_inference
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149825
Approved by: https://github.com/chenyang78, https://github.com/desertfire, https://github.com/jingsh
Summary:
We might free the active buffer if we free the buffer twice.
Test Plan:
```
LD_LIBRARY_PATH=/data/users/$USER/pytorch/build/lib
/home/$USER/local/pytorch/build/bin/test_aoti_inference
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149810
Approved by: https://github.com/chenyang78