Add non-package python modules to the public API checks.
The original change is to remove the `ispkg` check in this line
https://github.com/pytorch/pytorch/blob/main/docs/source/conf.py#L518
Everything else is to add the appropriate modules to the rst files, make sure every module we provide can be imported (fixed by either making optional dependencies optional or just deleting files that have been un-importable for 3 years), make API that are both modules and functions (like torch.autograd.gradcheck) properly rendered on the docs website without confusion and add every non-documented API to the allow list (~3k of them).
Next steps will be to try and fix these missing docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110568
Approved by: https://github.com/zou3519
Changes:
1. `typing_extensions -> typing-extentions` in dependency. Use dash rather than underline to fit the [PEP 503: Normalized Names](https://peps.python.org/pep-0503/#normalized-names) convention.
```python
import re
def normalize(name):
return re.sub(r"[-_.]+", "-", name).lower()
```
2. Import `Literal`, `Protocal`, and `Final` from standard library as of Python 3.8+
3. Replace `Union[Literal[XXX], Literal[YYY]]` to `Literal[XXX, YYY]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94490
Approved by: https://github.com/ezyang, https://github.com/albanD
adding a quick link to nvfuser README.md in jit doc
Note that for 1.12 release, we probably want to have the link pointed to the doc in the release code base. I don't know if we have a tag for 1.12 release candidate yet, so we might want to update that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77780
Approved by: https://github.com/davidberard98
adding a link to github 1.12 release branch nvfuser README.md in jit doc
Note that this PR is intended to be cherry-picked by 1.12 release, we'll have a follow up PR to update the link once this PR is merged.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78160
Approved by: https://github.com/davidberard98
Re-landing #68111/#74596
## Description
v0.5 PR of this [RFC](https://github.com/pytorch/pytorch/issues/49444).
On the basis of #50256, the below improvements are included:
* The [v0.5 release branch](https://github.com/oneapi-src/oneDNN/releases/tag/graph-v0.5) of the oneDNN Graph API is used
* The fuser now works with the profiling graph executor. We have inserted type check nodes to guard the profiled tensor properties.
### User API:
The optimization pass is disabled by default. Users could enable it by:
```
torch.jit.enable_onednn_fusion(True)
```
`torch.jit.freeze` should be used after tracing (recommended) or scripting a model.
### Performance:
[pytorch/benchmark](https://github.com/pytorch/benchmark) tool is used to compare the performance:
* SkyLake 8180 (1 socket of 28 cores):

* SkyLake 8180 (single thread):

* By mapping hardswish to oneDNN Graph, it’s 8% faster than PyTorch JIT (NNC + OFI)
** We expect performance gain after mapping transpose, contiguous & view to oneDNN graph ops
### Directory structure of the integration code
Fuser-related code is placed under:
```
torch/csrc/jit/codegen/onednn/
```
Optimization pass registration is done in:
```
torch/csrc/jit/passes/onednn_graph_fuser.h
```
CMake for the integration code is in:
```
caffe2/CMakeLists.txt
cmake/public/mkldnn.cmake
cmake/Modules/FindMKLDNN.cmake
```
## Limitations
* In this PR, we only support Pytorch-oneDNN-Graph integration on Linux platform. Support on Windows and MacOS will be enabled as a next step.
* We have only optimized the inference use-case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76622
Approved by: https://github.com/eellison
Fixes https://github.com/pytorch/pytorch/issues/75464 Adds a context manager that will throw if the ops in the context are not fused.
API is :
```
with torch.jit.strict_fusion():
...
```
A few TODOs:
[+] Compose/figure out how to do with autodiff - right now it will run on autodiff as well
[+] Support all of the nvfuser operators that are added in guarding
[+] Figure out what to do with control flow that isn't taken (right now it will just error). this is probably a source of the original issue :/ - will just error
[+] (After those are figured out) add to docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75777
Approved by: https://github.com/davidberard98
Summary:
## Description
Preview4 PR of this [RFC](https://github.com/pytorch/pytorch/issues/49444).
On the basis of https://github.com/pytorch/pytorch/pull/50256, the below improvements are included:
- The [preview4 release branch](https://github.com/oneapi-src/oneDNN/releases/tag/graph-v0.4.1) of the oneDNN Graph API is used
- The fuser now works with the profiling graph executor. We have inserted type check nodes to guard the profiled tensor properties.
### User API:
The optimization pass is disabled by default. Users could enable it by:
```
torch.jit.enable_onednn_fusion(True)
```
### Performance:
[pytorch/benchmark](https://github.com/pytorch/benchmark) tool is used to compare the performance:
- SkyLake 8180 (1 socket of 28 cores):

- SkyLake 8180 (single thread):

\* By mapping hardswish to oneDNN Graph, it’s 8% faster than PyTorch JIT (NNC + OFI)
\** We expect performance gain after mapping transpose, contiguous & view to oneDNN graph ops
### Directory structure of the integration code
Fuser-related code are placed under:
```
torch/csrc/jit/codegen/onednn/
```
Optimization pass registration is done in:
```
torch/csrc/jit/passes/onednn_graph_fuser.h
```
CMake for the integration code is:
```
caffe2/CMakeLists.txt
```
## Limitations
- In this PR, we have only supported the optimization on Linux platform. The support on Windows and MacOS will be enabled as the next step.
- We have only optimized the inference use case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68111
Reviewed By: eellison
Differential Revision: D34584878
Pulled By: malfet
fbshipit-source-id: ce817aa8cc9052ee9ed930c9cf66be83449e61a4
(cherry picked from commit cd17683aa7d9c0947df45a1ab53627feff795587)
Summary:
Working towards https://docs.google.com/document/d/10yx2-4gs0gTMOimVS403MnoAWkqitS8TUHX73PN8EjE/edit?pli=1#
This PR:
- Ensure that all the submodules are listed in a rst file (that ensure they are considered by the coverage tool)
- Remove some long deprecated code that just error out on import
- Remove the allow list altogether to ensure nothing gets added back there
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73983
Reviewed By: anjali411
Differential Revision: D34787908
Pulled By: albanD
fbshipit-source-id: 163ce61e133b12b2f2e1cbe374f979e3d6858db7
(cherry picked from commit c9edfead7a01dc45bfc24eaf7220d2a84ab1f62e)
Summary:
This PR fixes the formatting issues in the new language reference
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56042
Reviewed By: gmagogsfm
Differential Revision: D27830179
Pulled By: nikithamalgifb
fbshipit-source-id: bce3397d4de3f1536a1a8f0a16f10a703e7d4406
Summary:
This is to prepare for new language reference spec that needs to describe `torch.jit.Attribute` and `torch.jit.annotate`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54485
Reviewed By: SplitInfinity, nikithamalgifb
Differential Revision: D27406843
Pulled By: gmagogsfm
fbshipit-source-id: 98983b9df0f974ed69965ba4fcc03c1a18d1f9f5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50649
**Summary**
Tutorials, documentation and comments are not consistent with the file
extension they use for JIT archives. This commit modifies certain
instances of `*.pth` in `torch.jit.save` calls with `*.pt`.
**Test Plan**
Continuous integration.
**Fixes**
This commit fixes#49660.
Test Plan: Imported from OSS
Reviewed By: ZolotukhinM
Differential Revision: D25961628
Pulled By: SplitInfinity
fbshipit-source-id: a40c97954adc7c255569fcec1f389aa78f026d47
Summary:
freeze was temporarily renamed to _freeze in a reorg, and then removed from doc [here](https://github.com/pytorch/pytorch/pull/43473). add it back to docs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47120
Reviewed By: suo
Differential Revision: D24650712
Pulled By: eellison
fbshipit-source-id: 399e31586b8093de66937ba1266007ee291f509e
Summary:
xref gh-38010 and gh-38011.
After this PR, there should be only two warnings:
```
pytorch/docs/source/index.rst:65: WARNING: toctree contains reference to nonexisting \
document 'torchvision/index'
WARNING: autodoc: failed to import class 'tensorboard.writer.SummaryWriter' from module \
'torch.utils'; the following exception was raised:
No module named 'tensorboard'
```
If tensorboard and torchvision are prerequisites to building docs, they should be added to the `requirements.txt`.
As for breaking up quantization into smaller pieces: I split out the list of supported operations and the list of modules to separate documents. I think this makes the page flow better, makes it much "lighter" in terms of page cost, and also removes some warnings since the same class names appear in multiple sub-modules.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41321
Reviewed By: ngimel
Differential Revision: D22753099
Pulled By: mruberry
fbshipit-source-id: d504787fcf1104a0b6e3d1c12747ec53450841da
Summary:
solves most of gh-38011 in the framework of solving gh-32703.
These should only be formatting fixes, I did not try to fix grammer and syntax.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41068
Differential Revision: D22411919
Pulled By: zou3519
fbshipit-source-id: 25780316b6da2cfb4028ea8a6f649bb18b746440
Summary:
xref gh-32838, gh-34032
This is a major refactor of parts of the documentation to split it up using sphinx's `autosummary` feature which will build out `autofuction` and `autoclass` stub files and link to them. The end result is that the top module pages like torch.nn.rst and torch.rst are now more like table-of-contents to the actual single-class or single-function documentations pages.
Along the way, I modified many of the docstrings to eliminate sphinx warnings when building. I think the only thing I changed from a non-documentation perspective is to add names to `__all__` when adding them to `globals()` in `torch.__init__.py`
I do not know the CI system: are the documentation build artifacts available after the build, so reviewers can preview before merging?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37419
Differential Revision: D21337640
Pulled By: ezyang
fbshipit-source-id: d4ad198780c3ae7a96a9f22651e00ff2d31a0c0f
Summary:
Full details in task: https://our.intern.facebook.com/intern/tasks/?t=64776265
With pytroch 1.5+ we remove python2 support from PyTorch. All documentation under docs/ and on the pytorch.org website needs to remove Python 2 references.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36114
Differential Revision: D20901746
Pulled By: jlin27
fbshipit-source-id: 07f8dc8e6fab0b232e5048a63079cab0c433c85f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515
Once upon a time we thought this was necessary. In reality it is not, so
removing it.
For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.
There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.
Test Plan: Imported from OSS
Differential Revision: D20353503
Pulled By: suo
fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93