This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds epilogue fusion support for bf16/fp16 gemms. The key changes are as follows:
1. bf16 linear w/ epilogue fusion of some ops was originally supported via ATen oneDNN linear pointwise ops. In order to match the ATen op semantics, in-template epilogue support is added to the cpp gemm template so that we would have: "gemm + in-template epilogues -> template buffer". If the template is chosen for codegen, the in-template epilogues will be concatenated with the out-of-template epilogues that are appended during the scheduling.
2. Support bf16/fp16 legalization for `codegen_loop_bodies` which is used to generate the epilogue loops.
3. We used to leverage the in-place buffer mechanism to handle the in-place buffers in the epilogue codegen, in particular, for the reuses for output buffers of GEMM, template and epilogues. This is not correct since the output buffer is an "output" not an "in-place" buffer of the template kernel itself. Now, we use a dedicated "aliases" dict to manage such buffer reuses and the intermediate aliasing buffers are removed after codegen.
4. Add `localize_buffer` method to `LocalBufferScope` to allow the replacement of a global buffer with a local one in the given inductor IR nodes. This helps the fused loops to work on smaller-sized local buffers for better data locality.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126545
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019, #126068
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
Add `# mypy: disallow-untyped-defs` to scheduler.py and then fix the resulting fallout.
We probably should eventually add a new node between BaseSchedulerNode and all the non-FusedSchedulerNode types to indicate the split between nodes that have a valid `self.node` and ones that don't. That would cause a lot of the `assert self.node is not None` churn to go away - but was a bigger change because a lot of code makes assumptions about types that aren't reflected in the types themselves.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126656
Approved by: https://github.com/eellison
**Summary**
Fix issue: https://github.com/pytorch/pytorch/issues/126449. For `ops.masked` in CPP backend, when input dtype is `bool`, we actually load it as `VecMask<float, N>`. So, we should unify the type of `other` and `mask` to the same as `VecMask<float, N>` to invoke `blendv` method.
**Test Plan**
```
clear && python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_ops_masked_with_bool_input
clear && PYTORCH_ALL_SAMPLES=1 python -u -m pytest -s -v test/inductor/test_torchinductor_opinfo.py -k test_comprehensive__chunk_cat_cpu_bool
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126662
Approved by: https://github.com/isuruf, https://github.com/jgong5, https://github.com/peterbell10
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #126019
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
This doesn't entirely fix the original problem that prompted this, but
it seems to just be getting stuck in export constraint formatting now
which seems like progress to me.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122827
Approved by: https://github.com/avikchaudhuri
**Summary**
Refactor the `Scheduler.fuse_nodes` changes in https://github.com/pytorch/pytorch/pull/121625. In the previous implementation of `Scheduler.fuse_nodes` in https://github.com/pytorch/pytorch/pull/121625, we use the `enable_outer_loop_fusion` context to ensure `OuterLoopFusion` happens after all the norm fusions.
And there is a discussion in https://github.com/pytorch/pytorch/pull/121625/files#r1527177141 to reuse current `score_fusion` mechanism. However, given that [fuse_nodes](f4ff063c33/torch/_inductor/scheduler.py (L1679-L1698)) will invoke `fuse_nodes_once` 10 times. We are concerned that the score approach may potentially disrupt pairs of regular fusion nodes in the 2rd invocation of `fuse_nodes_once` if they have been pick up by the outer loop fusion in the 1st invocation of `fuse_nodes_once`.
In this PR, we propose adding an abstract of `filter_possible_fusions_by_priority`. In each invoking of `fuse_nodes_once`, the possible fusions will be grouped by their priority from the backend. And only the group of possible fusions with highest priority will be fused in this invocation. In this way, we can ensure `OuterLoopFusion` happens after all the norm fusions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123067
Approved by: https://github.com/lezcano, https://github.com/jgong5
ghstack dependencies: #121625
This PR unified the vectorized conversion with `at::vec::convert` for all vectorized data types. The intrinsics implementations are implemented as a specialization and moved to their own arch-specific files. The vectorized conversion logic in cpp Inductor is simplified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119979
Approved by: https://github.com/jansel, https://github.com/malfet
Sympy simplifications don't obey floating point semantics, so don't
use Sympy for this. Keep them as is, only evaluate with the reference
implementations when all arguments are known.
This may end up getting subsumed by some other changes later, but I
wanted to understand if this was easy and it seems to be easy.
This doesn't actually depend on the earlier diffs on the stack and I can detach it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122823
Approved by: https://github.com/lezcano
This PR adds the vectorized indirect indexing so that we can further simplify the `CppVecKernelChecker` (done in the later PR #119734) and remove the check that throws `CppVecUnsupportedError`. A boundary assertion check is added on vectorized indices and via the new `indirect_assert` method on `Kernel` - the base implementation is for scalar indices, overridden in `CppVecKernel` for vectorized indices.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119655
Approved by: https://github.com/jansel
ghstack dependencies: #119654
Vectorized boolean values in CPU Inductor were modeled with `Vectorized<float>` which cannot work for operations with other data types. This PR generalizes it with the new `VecMask` template class that can work for masks on any vectorized data types. The intrinsics implementation in `cpp_prefix.h` for mask conversion, cast and masked load are now implemented as the specialization for `VecMask` and moved to corresponding header files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119654
Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel