Summary: Currently inf is serialized as Infinity in JSON which is not standard compliant. Instead we will tweak all special floating points into strings and handle them at json layer.
Test Plan:
see D69060784
CI
Differential Revision: D69186425
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146490
Approved by: https://github.com/yiming0416
Summary: Implement an oss version of modelrunner with clean dependencies. The new oss model runner only removes thrift and only use json header to load the model.
Test Plan: Test will be added in the next diff separately. (D69060784)
Differential Revision: D68846877
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146440
Approved by: https://github.com/SherlockNoMad
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).
This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.
Test Plan: added test
D68880766
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
If a user passes in a namedtuple as an input, currently the input TreeSpec looks like: `TreeSpec(type=namedtuple, context=”class_fqn”, children_spec=[*, *])`
The user then saves the program containing this input TreeSpec. But what happens if they load it in a new environment where `class_fqn` now contains an additional field?
This means that the exported program is now expected to take in another input. But since those fields were not used in the original program, users should be able just drop those additional fields and the program will run successfully. This is needed/used in APS where they use unflattener's adapter to adapt the inputs based on the previously saved treespecs.
There are a couple of [solutions](https://docs.google.com/document/d/1V4ZSdy-8PUISWc8RqvGu3DU01BVegJhHHPWqa1Io7Eg/edit?tab=t.0) for how we can address this, but eventually we settled on saving a side table mapping namedtuple types to their list of field names, which can then be accessed by the adapter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145956
Approved by: https://github.com/zhxchen17
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).
This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.
Test Plan: added test
Differential Revision: D68880766
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
Summary:
Previously, aoti compile node is represented as a kernel-less custom op in the exported program. The node was not eager runnable, which is a common practice for numerical validation during lowering.
I introduce a new HOP to address this.
The schema is following
```
aoti_call_delegate(lower_moduel: AOTInductorEPModule, original_gm: fx.GraphModule, weights: List[Tensor], inputs: List[Tensor])
```
There are a few problems exposed by HOP
- AOTI expects a FX graph with weights as getattr nodes, aka stateful graph. HOP expect graph_module arguments to be stateless. Export serializer also expect a stateless graph. Currently, to make AOTI happy, I am making `original_gm` stateful, and bypassing the serialization for `original_gm`.
- As a result, the HOP is not re-traceable, as functionalization on stateful graph module argument will fail.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:cpu_lowering_utils_test
Reviewed By: zhxchen17
Differential Revision: D68359391
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145630
Approved by: https://github.com/zou3519
Instead of bumping symint counters when we process unbacked bindings during deserialization, it's better to bump them at the beginning based on what the symbols in the original shape env before serialization were. This allows symbols in unbacked bindings to have "gaps" that bumping alone would not be able to match.
Why is bumping counters important at all? It is because when the shape env coming out of deserialization is used later for propagating symints, say in run_decompositions, we don't want new names to clash with existing names (bad things happen).
Differential Revision: [D68798191](https://our.internmc.facebook.com/intern/diff/D68798191/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145882
Approved by: https://github.com/pianpwk
Adds unbacked bindings during deserialization. These are carried by a node's metadata, and map pending fresh unbacked symbols to paths to such symbols inside the corresponding example value carried by the node's metadata.
Since it is awkward to serialize paths, we only serialize the names of these symbols and reconstruct the paths on deserialization, using a shape env util. We also need to bump counters for unbacked symbols here, because the shape env util we use to create these symbols (when deserializing example values) don't do so, and not doing so makes later passes (like `run_decompositions`) crash because new unbacked symbols don't get new names.
This is enough for non-strict. For strict, the unbacked bindings and example values in node metadata can get out of sync, because of running AOTAutograd as an additional step after Dynamo. So we have to sync those back.
Differential Revision: [D68232274](https://our.internmc.facebook.com/intern/diff/D68232274/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144894
Approved by: https://github.com/pianpwk
Summary:
Add experimental support for torch.nn.Module as input types.
Before this change, we don't support module inputs but recently we saw some interesting use cases like gpt-fast https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py#L68 where we directly pass in a module input for different variants of the same models.
Since we don't really care about non-param or non-buffer states in non strict mode, we don't care about those either and pretend they are like plain constants during tracing. We treat any module input like a nested container of tensor, and each time we will automatically register a pytree handler for these module types to flatten its state dict into a group of tensors. We will just inline any module method call during tracing like we did for `self` module in export_for_training. This will make input modules' behavior very similar to the training module in typical case, except that we don't record the inputs as parameter or buffers but rather just plain user inputs.
Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_module_input
Differential Revision: D67680827
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143925
Approved by: https://github.com/tugsbayasgalan
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element.
Test Plan:
```
buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond
buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2
```
Differential Revision: D66991624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227
Approved by: https://github.com/zhxchen17
Summary:
When there is a `torch._check()` that checks if a sym_int is equal to some constant, it will generate 3 nodes in the graph with target `operation.ge`, `operator.le` and `operator.eq`. These operators belong to `_SYM_BOOL_OPS` but the `meta_val` of these nodes are are `bool` instead of `torch.SymBool`.
Similar things can happen to `torch.SymInt`, where a `node.target` belongs to `_SYM_INT_OPS` but `node.meta["val"]` is an `int` instead of `torch.SymInt`.
Therefore, we need to check both `meta_val` type and `node.target` type during serialization.
Test Plan:
```
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_bool_torch_check_equal
buck2 run @mode/dev-nosan caffe2/test:test_export -- -r test_sym_int_torch_check_equal
```
Differential Revision: D67883754
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144295
Approved by: https://github.com/avikchaudhuri, https://github.com/angelayi
Reverts a change in #121337. All dataclass members must be serialized, even default-valued members, because downstream code often implicitly assumes their presence.
This PR fixes a segfault when running `test_custom_op_all_inputs` from `test/inductor/test_aot_inductor_custom_ops.py`. This segfault was caused by querying for an "index" field for the `Device` type (see `torch/csrc/inductor/aoti_torch/oss_proxy_executor.cpp:136`), which was previously skipped when serializing if the device index was unspecified. A number of other structs which are deserialized in this file also contain optional fields, and presumably could experience the same bug.
Fixes#138955Fixes#134793
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142286
Approved by: https://github.com/zhxchen17
ghstack dependencies: #142175
Summary:
In thrift schema, we represent every None value as "True/False" while we represent None as () in OSS schema. This will cause some inconsistency between the type systems and the simplest thing to do here is changing Tuple[()] to bool in oss schema.
This change should NOT cause version bump, because on deserializer side we never read the value from as_none fields, as it doesn't have real meaning. Therefore this schema change should be considered as safe.
Test Plan: CI
Reviewed By: SherlockNoMad
Differential Revision: D66888892
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142257
Approved by: https://github.com/yiming0416, https://github.com/hl475
Summary: To make sure schema.py and schema.thrift are kept in sync, we use the int keys from thrift and use Python Annotated type to associate fields between thrift and schema.py. Later we will use this association to build a single source of truth between the schemas.
Test Plan: CI
Differential Revision: D66253157
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141611
Approved by: https://github.com/yiming0416
Summary:
Latest attempt after [136802](https://github.com/pytorch/pytorch/pull/136802) and [140084](https://github.com/pytorch/pytorch/pull/140084) got shelved.
This keeps the string format for `expr_str`, but calls `sympy.printing.repr.srepr(s)` instead of `str(s)`, which prints expressions more explicitly, e.g.
```
((2*x)//(3*y + 4)) -> "FloorDiv(Mul(Integer(2), Symbol('x')), Add(Mul(Integer(3), Symbol('y')), Integer(4)))"
```
This is nice because:
- we have better roundtrippability for deserialization, robust to pretty printing changes like [this](6c9bfd52b6/torch/utils/_sympy/functions.py (L208)) that caused the issue in the first place.
- this preserves the BC surface for both 1) sigmoid thrift serialization, by keeping the string format, and 2) deserialization for old IRs, since `sympy.sympify(...)` still handles the old `str(s)` format.
- more memory efficient than storing ASTs; the [AST attempt](https://github.com/pytorch/pytorch/pull/140084) increased artifact size by 20% on some toy programs.
- doesn't even require a schema version bump.
Additionally to push some test cases over the line, this redoes expression processing (handling ranges, symbol caching) by doing bottom-up processing instead of the current hacky-ish workflow.
Test Plan: test_serdes, test_serialize, internal tests broken by AST PR
Differential Revision: D66283208
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141284
Approved by: https://github.com/zhxchen17
Summary: The struct type is named "InputToConsantInputSpec" in thrift which causes some inconsistency between the schema. Changing the type name from 1 to another is okayish because that doesn't change the on wire format.
Test Plan: CI
Differential Revision: D66240951
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141151
Approved by: https://github.com/yiming0416
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
Summary: The way we've been de/serializing sympy.Exprs is not roundtrippable in all cases (serialize by calling `str(expr)`, and deserialize by calling `sympy.sympify(expr_str)`). This has led to expressions being mathematically equivalent but structurally different, causing issues in ValueRanges. Example issue: https://github.com/pytorch/pytorch/issues/136797
This starts to deprecate the use of `expr_str` and stores expressions in AST format instead. For BC purposes, `expr_str` deserialization is still supported, but we will always serialize to `expr_ast`. We'll kill this once the serialization upgrader design is finalized and implemented.
Test Plan: test_export
Differential Revision: D65638757
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140084
Approved by: https://github.com/angelayi