Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28242
There is no reason to have it in a general API of Module/Method - it's
just another graph pass. It was there because some time ago modules were
not first class and all graphs were lowered. After that changed, this
API was added for easier transition, but now we don't need it anymore.
Test Plan: Imported from OSS
Differential Revision: D17986724
Pulled By: ZolotukhinM
fbshipit-source-id: 279a1ec450cd8fac8164ee581515b09f1d755630
Summary:
We currently support exporting traced interpolate ops to ONNX.
Scripting interpolate op invokes aten::__interpolate in the Torch IR (instead of aten::upsample_[mode][dim]d), which we do not support yet.
This PR implements the ONNX symbolic for __interpolate() to support exporting interpolate in scripting scenarios.
Related open issue: https://github.com/pytorch/pytorch/issues/25807
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27566
Reviewed By: hl475
Differential Revision: D17817731
Pulled By: houseroad
fbshipit-source-id: e091793df503e2497f24821cf2954ff157492c75
Summary:
ONNX does not support dictionaries for inputs and output. The reason is that the arg flattening and unflattening does not handle Dictionary types.
This PR adds flattening/unflattening support for dictionaries and strings.
However this feature should be handled with caution for input dictionaries; and users need to verify their dict inputs carefully, and keep in mind that dynamic lookups are not available.
This PR will allow exporting cases where models have dictionnary outputs (detection and segmentation models in torchvision), and where dictionary inputs are used for model configurations (MultiScaleRoiAlign in torchvision).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25889
Reviewed By: hl475
Differential Revision: D17613605
Pulled By: houseroad
fbshipit-source-id: c62da4f35e5dc2aa23a85dfd5e2e11f63e9174db
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26738
someone may use torch._export directly. Here we change the onnx_export_type's default value to None,
and if it's pytorch onnx caffe2 bundle, we set it to ONNX_ATEN_FALLBACK, otherwise, it's ONNX.
Test Plan: ci
Reviewed By: hl475
Differential Revision: D17546452
fbshipit-source-id: 38e53926e2b101484bbbce7b58ebcd6af8c42438
Summary:
This is a follow-up PR for https://github.com/pytorch/pytorch/pull/23284. In that PR we had removed changing the default behavior for `keep_initializers_as_input` argument to the export API. With this PR we are enabling that change in that if `keep_initializers_as_input` is not specified then value/behavior for this argument is chosen automatically depending on whether the export type is ONNX or not.
This was part of the earlier PR was removed for further review. The test points have also been updated.
This change may fail some internal tests which may require explicitly setting `keep_initializers_as_input=True` to preserve old behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26146
Reviewed By: hl475
Differential Revision: D17369677
Pulled By: houseroad
fbshipit-source-id: 2aec2cff50d215714ee8769505ef24d2b7865a11
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26487
The way it is implemented currently is bad because while we're inlining
to a graph G, we are also mutating all the graphs that are being
inlined. The problem is that the graphs we're inlining are usually the
original graphs of functions, so we're silently changing them behind the
scenes, and we don't have a way to recover 'unoptimized' graphs
afterwards.
Test Plan: Imported from OSS
Differential Revision: D17485748
Pulled By: ZolotukhinM
fbshipit-source-id: 6094ef56077240e9379d4c53680867df1b6e79ef
Summary:
This pass tries to resolve scalar type mismatch issues between input tensors introduced by the implicit type conversions on scalars.
e.g. https://github.com/pytorch/pytorch/issues/23724
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24378
Reviewed By: hl475
Differential Revision: D17088682
Pulled By: houseroad
fbshipit-source-id: 3de710f70c3b70b9f76fd36a7c4c76e168dbc756
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25052
Previously we would not inline nested functions, now we do.
Test Plan: Imported from OSS
Differential Revision: D16973848
Pulled By: suo
fbshipit-source-id: 94aa0b6f84a2577a663f4e219f930d2c6396d585
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799
Before, we inlined as part of the initial IR generation process, which
has a few disadvantages:
1. It loses information about what nodes came from which function/method
calls. Other parties who want to implement transformations on the
function/module level don't have a reliable way of doing so.
2. It duplicates a ton of code if we are inlining the same
function/method a tons of times.
After this PR: inline is deferred to the optimization stage, so
optimizations that rely on inlining will still work. But things get
serialized with the function/method calls in.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799
Differential Revision: D16652819
Test Plan: Imported from OSS
Reviewed By: jamesr66a
Pulled By: suo
fbshipit-source-id: a11af82aec796487586f81f5a9102fefb6c246db
Summary:
Existing code adds two enumerators to the set instead of forming their union.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23974
Differential Revision: D16732762
Pulled By: ezyang
fbshipit-source-id: 787737b7cf4b97ca4e2597e2da4a6ade863ce85c
Summary:
Starting ONNX IR version 4, the initializers in the ONNX graph do not have to be inputs of the graphs. This constraint, which existed in IR version 3 and earlier, was relaxed in IR version 4. This PR provides an API level argument to allow ONNX export with the relaxed constraint of IR version 4, i.e. provides the option to not include initializers as inputs. This allows backends/runtimes to do certain optimizations, such as constant folding, better.
*Edit*: After discussion with houseroad we have the following behavior. For any OperatorExportType, except OperatorExportTypes.ONNX, the current status of export is maintained in this PR by default. However, the user can override it by setting the `keep_initializers_as_inputs` argument to the export API. But when exporting to ONNX, i.e. OperatorExportType is OperatorExportTypes.ONNX, the current status is changed in that by default the initializers are NOT part of the input. Again, the default can be overridden by setting the `keep_initializers_as_inputs` argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23284
Differential Revision: D16459961
Pulled By: bddppq
fbshipit-source-id: b8f0270dfaba47cdb8e04bd4cc2d6294f1cb39cf
Summary:
Don't automatically unwrap top layer DataParalllel for users. Instead, we provide useful error information and tell users what action to take.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23365
Reviewed By: zrphercule
Differential Revision: D16514273
Pulled By: houseroad
fbshipit-source-id: f552de5c53fb44807e9d9ad62126c98873ed106e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23180
This pass needs to be run later because it breaks jit graph invariants and the lower_all_tuples pass still needs a valid jit graph.
Reviewed By: houseroad
Differential Revision: D16427680
fbshipit-source-id: 427c7e74c59a3d7d62f2855ed626cf6258107509
Summary:
This is an extension to the original PR https://github.com/pytorch/pytorch/pull/21765
1. Increase the coverage of different opsets support, comments, and blacklisting.
2. Adding backend tests for both caffe2 and onnxruntime on opset 7 and opset 8.
3. Reusing onnx model tests in caffe2 for onnxruntime.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22421
Reviewed By: zrphercule
Differential Revision: D16225518
Pulled By: houseroad
fbshipit-source-id: 01ae3eed85111a83a0124e9e95512b80109d6aee
Summary:
Currently ONNX constant folding (`do_constant_folding=True` arg in `torch.onnx.export` API) supports only opset 9 of ONNX. For opset 10, it is a no-op. This change enables ONNX constant folding for opset 10. Specifically there are three main changes:
1) Turn on constant folding ONNX pass for opset 10.
2) Update support for opset 10 version of `onnx::Slice` op for backend computation during constant folding.
3) Enable constant folding tests in `test/onnx/test_utility_funs.py` for multiple opsets (9 and 10).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22515
Reviewed By: zrphercule
Differential Revision: D16189336
Pulled By: houseroad
fbshipit-source-id: 3e2e748a06e4228b69a18c5458ca71491bd13875
Summary:
- Fix typo in ```torch/onnx/utils.py``` when looking up registered custom ops.
- Add a simple test case
1. Register custom op with ```TorchScript``` using ```cpp_extension.load_inline```.
2. Register custom op with ```torch.onnx.symbolic``` using ```register_custom_op_symbolic```.
3. Export model with custom op, and verify with Caffe2 backend.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21321
Differential Revision: D16101097
Pulled By: houseroad
fbshipit-source-id: 084f8b55e230e1cb6e9bd7bd52d7946cefda8e33
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22499
Another place where onnx export is running dead code elimination after making the jit graph invalid. Fixing it.
Reviewed By: houseroad
Differential Revision: D16111969
fbshipit-source-id: 5ba80340c06d091988858077f142ea4e3da0638c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22476
Dead code elimination assumes a valid jit graph because it checks if operators have side effects.
The onnx export path destroys the jit graph right before calling dead code elimination, but it actually doesn't care about side effects.
We can just call dead code elimination and disable side effect lookup and things should work.
Reviewed By: houseroad
Differential Revision: D16100172
fbshipit-source-id: 8c790055e0d76c4227394cafa93b07d1310f2cea
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22413
_jit_pass_erase_number_types invalidates the jit graph but parts of _jit_pass_onnx rely on having a valid jit graph.
This splits _jit_pass_onnx into _jit_pass_onnx_remove_print and _jit_pass_onnx_preprocess_caffe2 (which rely on the valid jit graph), runs these before _jit_pass_erase_number_types,
and then runs the rest of _jit_pass_onnx after _jit_pass_erase_number_types
Reviewed By: houseroad
Differential Revision: D16079890
fbshipit-source-id: ae68b87dced077f76cbf1335ef3bf89984413224
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22319
The onnx pass replacing ints with Tensors produces an invalid JIT graph. It should only be called right before the onnx pass.
Also, it should only be called if we actually export to onnx.
Reviewed By: houseroad
Differential Revision: D16040374
fbshipit-source-id: e78849ee07850acd897fd9eba60b6401fdc4965b
Summary:
- [x] Add tests after https://github.com/pytorch/pytorch/pull/20256 is merged
- Support exporting ScriptModule with inputs/outputs of arbitrarily constructed tuples.
- Moved the assigning of output shapes to after graph conversion to ONNX is completed. By then all tuples in the IR has already been lowered by the pass ```_jit_pass_lower_all_tuples```. If assigning output shapes is required to happen before that, we'll need to hand parse the tuple structures in the graph, and repeat the same logic in ```_jit_pass_lower_all_tuples```. Handling inputs is easier because all tuple information is encoded within the input tensor type.
- Swap the order of ```_jit_pass_lower_all_tuples``` and ```_jit_pass_erase_number_types```. Ops like ```prim::TupleIndex``` relies on index being a scalar. ```_jit_pass_erase_number_types``` will convert these kind of scalars to tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20784
Reviewed By: zrphercule
Differential Revision: D15484171
Pulled By: houseroad
fbshipit-source-id: 4767a84038244c929f5662758047af6cb92228d3
Summary:
Input argument `f` in `_model_to_graph()` method in `torch/onnx/utils.py` is unused. This PR removes it. If there's a reason to keep it around, please let me know.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19647
Reviewed By: dzhulgakov
Differential Revision: D15071720
Pulled By: houseroad
fbshipit-source-id: 59e0dd7a4d5ebd64d0e30f274b3892a4d218c496
Summary:
Strip the doc_string by default from the exported ONNX models (this string has the stack trace and information about the local repos and folders, which can be confidential).
The users can still generate the doc_string by specifying add_doc_string=True in torch.onnx.export().
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18882
Differential Revision: D14889684
Pulled By: houseroad
fbshipit-source-id: 26d2c23c8dc3f484544aa854b507ada429adb9b8
Summary:
Almost there, feel free to review.
these c10 operators are exported to _caffe2 domain.
TODO:
- [x] let the onnx checker pass
- [x] test tensor list as argument
- [x] test caffe2 backend and converter
- [x] check the c10 schema can be exported to onnx
- [x] refactor the test case to share some code
- [x] fix the problem in ONNX_ATEN_FALLBACK
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18210
Reviewed By: zrphercule
Differential Revision: D14600916
Pulled By: houseroad
fbshipit-source-id: 2592a75f21098fb6ceb38c5d00ee40e9e01cd144
Summary:
Introduce this check to see whether it will break any existing workflow
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18145
Reviewed By: dzhulgakov
Differential Revision: D14511711
Pulled By: houseroad
fbshipit-source-id: a7bb6ac84c9133fe94d3fe2f1a8566faed14a136
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
So, we will keep the names of ONNX initializers the same as the names in PyTorch state dict.
Later, we will make this as the default behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17551
Reviewed By: dzhulgakov
Differential Revision: D14491920
Pulled By: houseroad
fbshipit-source-id: f355c02e1b90d7ebbebf4be7c0fb6ae208ec795f
Summary:
1) The changes in the new opset won't affect internal pipeline.
2) The CI won't be affected by the ONNX changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17736
Reviewed By: zrphercule
Differential Revision: D14358710
Pulled By: houseroad
fbshipit-source-id: 4ef15d2246b50f6875ee215ce37ecf92d555ca6a
Summary:
Similar to `nn.Parameter`s, this PR lets you store any `IValue` on a module as an attribute on a `ScriptModule` (only from the Python front-end currently). To mark something as an attribute, it should wrapped in `jit.Attribute(value, type)` (ex. `self.table = torch.jit.Attribute(table, Dict[str, torch.Tensor])`)
Followup Work:
* (de)serializing for use in C++
* change `self.training` to be a `bool` attribute instead of a buffer
* mutable attributes
* string frontend support
* documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17309
Differential Revision: D14354316
Pulled By: driazati
fbshipit-source-id: 67e08ab5229366b67fbc837e67b58831a4fb3318
Summary:
Currently, serialization of model parameters in ONNX export depends on the order in which they are stored in a container (`list` on Python side and `std::vector` on C++ side). This has worked fine till now, but if we need to do any pass on that graph that mutates the parameter list, then strictly order-based serialization may not work.
This PR is the first in a set to bring in more passes (such as constant folding) related to ONNX export. This PR lays the groundwork by moving the serialization in ONNX export from order-based to name based approach, which is more amenable to some of the passes.
houseroad - As discussed this change uses a map for export, and removes the code from `export.cpp` that relies on the order to compute initializer names.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17420
Differential Revision: D14361993
Pulled By: houseroad
fbshipit-source-id: da93e945d55755c126de06641f35df87d1648cc4
Summary:
Still wip, need more tests and correct handling for opset 8 in symbolics.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16068
Reviewed By: zrphercule
Differential Revision: D14185855
Pulled By: houseroad
fbshipit-source-id: 55200be810c88317c6e80a46bdbeb22e0b6e5f9e