Commit Graph

561 Commits

Author SHA1 Message Date
albanD
a2b89154bf New swap function (#111747)
This PR is proposing a new approach to solve the nn/optim only linked by python object identity problem.
The idea is to have a function that can swap the content of two Tensors t1 and t2 while preserving all the old references.
This would allow us to swap the `model.weight` with a new Tensor (can be any subclass of Tensor and any TensorImpl (xla, sparse, nested tensorimpl would work)). The use within nn will be done in a follow up.

This is done by swapping the whole content of the PyObject and then putting back the fields associated with external references (refcount, gc tracking and weakrefs).
Note that we have to properly handle all the cases where there is memory used before the public pointer PyObject* and where the PyObject is bigger due to dict/weakref being inlined (older CPython version) or due to slots.

The main limitation of this approach is that the number of slots need to match for the objects being swapped and thus limit usage of slots in subclasses.

Draft right now to see what @colesbury thinks about doing this?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111747
Approved by: https://github.com/colesbury
2023-12-08 18:49:35 +00:00
PyTorch MergeBot
fe428a284b Revert "Add torch._lazy_clone to create COW tensors (#113397)"
This reverts commit 9916d8a9ea.

Reverted https://github.com/pytorch/pytorch/pull/113397 on behalf of https://github.com/DanilBaibak due to Unfortunately, I need to revert your PR because the lower [PR in the stack](https://github.com/pytorch/pytorch/pull/113396) is failing a bunch of internal build jobs. ([comment](https://github.com/pytorch/pytorch/pull/113397#issuecomment-1818761224))
2023-11-20 10:21:09 +00:00
Kurt Mohler
9916d8a9ea Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
ghstack dependencies: #113396
2023-11-17 01:58:51 +00:00
drisspg
9b0f2f8d94 expose sdpa helpers to python (#110496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110496
Approved by: https://github.com/jbschlosser
2023-11-15 07:34:34 +00:00
Nikita Shulga
78f3937ee8 [BE] Handle errors in set_num_threads (#113684)
and `set_num_interop_threads`

Before that, call `torch.set_num_threads(2**65)` resulted in segmentation fault, afterwards it becomes a good old runtime error:
```
% python -c "import torch;torch.set_num_threads(2**65)"
Traceback (most recent call last):
  File "<string>", line 1, in <module>
RuntimeError: Overflow when unpacking long
```

Similar to https://github.com/pytorch/pytorch/pull/60073

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113684
Approved by: https://github.com/Skylion007, https://github.com/albanD
2023-11-15 06:17:41 +00:00
Edward Z. Yang
f98ba596f1 Use CapturedTraceback symbolizer for C++ exceptions from Python library (#113207)
This is the cheap and cheerful implementation, which is only enabled on TORCH_SHOW_CPP_STACKTRACES, because it *eagerly* symbolizes immediately at exception throw time, even if the exception will end up getting caught. It would be better to do this lazily and only symbolize when we try to print the exception, but that requires a more involved refactor of c10::Error that I don't feel like doing.

Compare the output before:

```
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x95 (0x7fa21b99d975 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fa21b951269 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #2: c10::TensorImpl::sizes_custom() const + 0x9f (0x7fa21b9770df in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #3: at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) + 0x31e (0x7fa20a202a8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #4: <unknown function> + 0x29f34de (0x7fa20b5f34de in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #5: <unknown function> + 0x2a1fd8e (0x7fa20b61fd8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #6: <unknown function> + 0x6b907b (0x7fa2142b907b in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
frame #7: <unknown function> + 0x6b6175 (0x7fa2142b6175 in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
```

and after:

```
#4 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#5 c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const from ??:0
#6 c10::TensorImpl::sizes_custom() const [clone .localalias] from TensorImpl.cpp:0
#7 at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) from ??:0
#8 at::(anonymous namespace)::wrapper_Meta_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) from RegisterMeta.cpp:0
#9 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (at::Tensor const&, at::Tensor const&, at::Tensor&), &at::(anonymous namespace)::wrapper_Meta_mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, at::Tensor&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from RegisterMeta.cpp:0
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113207
Approved by: https://github.com/Skylion007
2023-11-09 15:06:08 +00:00
Kurt Mohler
fd209543d5 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD, https://github.com/aaronenyeshi
2023-11-01 16:10:09 +00:00
PyTorch MergeBot
ace2713d1e Revert "Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)"
This reverts commit f1785373c0.

Reverted https://github.com/pytorch/pytorch/pull/111377 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/111377#issuecomment-1784179040))
2023-10-29 17:41:55 +00:00
Kurt Mohler
f1785373c0 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD
2023-10-26 02:39:06 +00:00
Edward Z. Yang
c84c86f018 SymIntify convolution (#111599)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111599
Approved by: https://github.com/wanchaol, https://github.com/bdhirsh
2023-10-21 03:03:20 +00:00
Nikita Shulga
ad8aef0f98 [BE] [3/N] Use nested namespaces (#110314)
Mostly in torch/csrc/jit/runtime and in `ATen/cuda/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110314
Approved by: https://github.com/seemethere
2023-09-30 02:23:48 +00:00
Peter Bell
7ce69d5dbe [RELAND] Remove some unnecessary <iostream> includes from headers (#108150)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108150
Approved by: https://github.com/albanD, https://github.com/malfet
ghstack dependencies: #108149
2023-09-20 21:55:15 +00:00
Andrei Gheorghe
00908475e6 Use global variables to register the return_types namedtuples (#108832)
Fixes #69221. Builds on top of #107000, fixing the buck build issue linked [here](https://github.com/pytorch/pytorch/pull/107000#issuecomment-1708857375).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108832
Approved by: https://github.com/zou3519
2023-09-13 17:42:46 +00:00
PyTorch MergeBot
27d5dcf589 Revert "Use global variables to register the return_types namedtuples (#107000)"
This reverts commit ae8eb7a3f9.

Reverted https://github.com/pytorch/pytorch/pull/107000 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing internal build ([comment](https://github.com/pytorch/pytorch/pull/107000#issuecomment-1708862325))
2023-09-06 18:13:23 +00:00
Andrei Gheorghe
ae8eb7a3f9 Use global variables to register the return_types namedtuples (#107000)
Fixes #69221

@pytorchbot label "topic: not user facing"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107000
Approved by: https://github.com/zou3519
2023-09-05 20:00:29 +00:00
PyTorch MergeBot
378ffde8c1 Revert "Remove some unnecessary <iostream> includes from headers (#106914)"
This reverts commit a6c29b7227.

Reverted https://github.com/pytorch/pytorch/pull/106914 on behalf of https://github.com/izaitsevfb due to Causing metal breakage internally, see D48709279 ([comment](https://github.com/pytorch/pytorch/pull/106914#issuecomment-1696670027))
2023-08-29 02:22:33 +00:00
FFFrog
010064159b Fix the issue described by #106532 (#108036)
Fixes #106532

As the title says
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108036
Approved by: https://github.com/albanD
2023-08-28 16:23:47 +00:00
cyy
1fd4e787ce [2/N] fix clang-tidy warnings in torch/csrc (#107966)
Apply fixes to some found issues by clang-tidy in torch/csrc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107966
Approved by: https://github.com/Skylion007
2023-08-27 18:06:21 +00:00
Peter Bell
a6c29b7227 Remove some unnecessary <iostream> includes from headers (#106914)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
2023-08-25 18:24:05 +00:00
PyTorch MergeBot
28dc1a093f Revert "Remove some unnecessary <iostream> includes from headers (#106914)"
This reverts commit 60936e4c29.

Reverted https://github.com/pytorch/pytorch/pull/106914 on behalf of https://github.com/ZainRizvi due to Sorry, but this is breaking internal builds. Seems like a lot of internal code depends on some of the removed imports ([comment](https://github.com/pytorch/pytorch/pull/106914#issuecomment-1688605975))
2023-08-22 17:16:48 +00:00
Peter Bell
60936e4c29 Remove some unnecessary <iostream> includes from headers (#106914)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
2023-08-19 20:21:58 +00:00
Aaron Gokaslan
4baac20117 [BE] switch fprintf to fmt::print (#104640)
Testing out the new automated clang-tidy check in master. Code should be faster, more modern, and more efficient.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104640
Approved by: https://github.com/malfet
2023-07-05 21:11:39 +00:00
Nikita Shulga
6d2887cc06 Reland "Move tensor grouping to ATen" (#103912)
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors,  see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.

Also, using `std::hash` for string should result in a faster hash function.

(cherry picked from commit 74b7a6c75e)

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>

This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
2023-06-21 09:26:33 +00:00
leslie-fang-intel
9832cfbbfe Quantization oneDNN backend only support VNNI CPU (#103653)
**Summary**

- Update the quantization document that default qconfig with oneDNN backend is recommended to be used on CPUs with Vector Neural Network Instruction support.
- Add the warning message when user uses default qconfig with oneDNN backend on CPU without Vector Neural Network Instruction support.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103653
Approved by: https://github.com/jgong5, https://github.com/malfet
2023-06-19 09:50:07 +00:00
PyTorch MergeBot
0cb5bc3b04 Revert "Move tensor grouping to ATen (#100007)"
This reverts commit 74b7a6c75e.

Reverted https://github.com/pytorch/pytorch/pull/100007 on behalf of https://github.com/izaitsevfb due to Breaks internal builds, see D46629727 ([comment](https://github.com/pytorch/pytorch/pull/100007#issuecomment-1587861598))
2023-06-12 18:30:33 +00:00
Nikita Shulga
4cfa06f706 [BE] Deprecate has_XYZ attributes (#103279)
Use [`__getattr__`](https://peps.python.org/pep-0562/) to raise warningwhen one tries to access `has_XYZ` methods and recommend appropriate `torch.backends.XYZ` methods

Make respective properties in `torch._C` private (by prefixing them with underscore), to exclude from `from torch._C import *`.

Added `warnings.simplefilter` to workaround Python-3.11 torch.compile lineinfo issue.

Fixes https://github.com/pytorch/pytorch/issues/102484

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103279
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2023-06-10 05:17:17 +00:00
Masaki Kozuki
74b7a6c75e Move tensor grouping to ATen (#100007)
rel: #94344
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100007
Approved by: https://github.com/janeyx99
2023-06-09 15:44:46 +00:00
atannous
b469ed72d0 Integrating new API usage metadata logger (#101762)
Summary: The new logger allows passing metadata into the api usage logger. The immediate use case is to pass the serialization_id to the save and load events to be enable tracking serialized models in API events. It could be extended to add more metadata in the future.

Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```

Reviewed By: davidberard98

Differential Revision: D45683697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101762
Approved by: https://github.com/davidberard98
2023-05-26 00:24:26 +00:00
Benson Ma
66a2600b6a [T153220354] Fix header inclusions in c10 (#1541) (#101846)
Summary:
This is a re-attempt to land the iwyu header changes, by taking the diff from [PR 100304](https://github.com/pytorch/pytorch/pull/100304), and adding the bare minimal changes to make the diff build corectly in the internal builds.

X-link: https://github.com/facebookresearch/pytorch3d/pull/1541

X-link: https://github.com/fairinternal/pytorch3d/pull/44

- Re-work D45769819 to fix header inclusions in c10

Test Plan:
```
buck2 build --no-remote-cache mode/dev-nosan //caffe2/c10/...

buck2 build --no-remote-cache mode/dev-nosan //deeplearning/fbgemm/fbgemm_gpu/...

buck2 build mode/dev-nosan //vision/fair/pytorch3d/pytorch3d:_C
```

Reviewed By: malfet

Differential Revision: D45920611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101846
Approved by: https://github.com/malfet, https://github.com/Skylion007
2023-05-20 19:35:14 +00:00
PyTorch MergeBot
4eaaa08623 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 6037ee8cc9.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/jeanschmidt due to Breaking meta internal builds and fbgemm builds ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1543919257))
2023-05-11 12:37:35 +00:00
cyy
6037ee8cc9 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-11 05:19:42 +00:00
PyTorch MergeBot
3271413e74 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 39ec5fa722.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, it is almost there but fails on Windows 39ec5fa722, which is in unstable mode after https://github.com/pytorch/pytorch/pull/100548 ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1542975714))
2023-05-11 00:37:32 +00:00
cyy
39ec5fa722 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-10 15:42:43 +00:00
vfdev-5
6a12f10b08 Publicly exposing torch.backends.cpu.get_cpu_capability() (#100164)
Description:

- As suggested by Nikita, created `torch.backends.cpu` submodule and exposed `get_cpu_capability`.

- In torchvision Resize method we want to know current cpu capability in order to pick appropriate codepath depending on cpu capablities

Newly coded vectorized resize of uint8 images on AVX2 supported CPUs is now faster than older way (uint8->float->resize->uint8). However, on non-avx hardware (e.g. Mac M1) certain configs are slower using native uint8.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100164
Approved by: https://github.com/albanD, https://github.com/malfet
2023-05-03 19:02:07 +00:00
Zain Rizvi
d5f15d3515 Check for debug mode (#92707)
It works by validating the debug builds actually trigger debug level asserts

Turns out, most of our  debug jobs today don't actually build in debug mode (causing the test to fail). The PR also fixes that

Contributes to https://github.com/pytorch/pytorch/issues/88842
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92707
Approved by: https://github.com/malfet, https://github.com/albanD
2023-04-27 20:57:18 +00:00
cyy
dbc7e919b8 add Wmissing-prototypes to clang-tidy (#96805)
This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>

This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
2023-04-25 18:20:36 +00:00
PyTorch MergeBot
f4f1a5b5b3 Revert "Move functional collectives to the right namespace (#97793)"
This reverts commit 184bfbc3d7.

Reverted https://github.com/pytorch/pytorch/pull/97793 on behalf of https://github.com/atalman due to breaks internal builds
2023-03-31 16:02:07 +00:00
Rodrigo Kumpera
184bfbc3d7 Move functional collectives to the right namespace (#97793)
This moves them from `torch._C._nn` to `torch._C._dist`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97793
Approved by: https://github.com/albanD
2023-03-30 22:18:13 +00:00
Sergii Dymchenko
5ab50cf048 Fix shoud/shoudl typos (#97930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97930
Approved by: https://github.com/clee2000
2023-03-30 08:27:16 +00:00
shibo
6b691b99da add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-20 20:27:35 +00:00
PyTorch MergeBot
a8f36dd646 Revert "add amp support for custom backend (#96188)"
This reverts commit cf12edee02.

Reverted https://github.com/pytorch/pytorch/pull/96188 on behalf of https://github.com/kit1980 due to Broke some linalg tests : https://github.com/pytorch/pytorch/actions/runs/4420037607/jobs/7750708339
2023-03-15 00:03:19 +00:00
shibo
cf12edee02 add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-14 20:43:21 +00:00
Elias Ellison
da265652d6 Return Live Data Pointers from Checkpoint, swap onto tensors (#95020)
When we checkpoint the state of the private pool allocator, we will need to make sure that its current live allocated blocks will get properly cleaned up when the tensors they correspond to die. Return DataPtrs for these new allocated blocks that the callee can swap onto live Tensors.

The exact api for setting the checkpoint can be manipulated after this as the cudagraph implementation is built out, but this at least shows its sufficiently general.

This should be the last PR touching cuda caching allocator necessary for new cudagraphs integration.

Differential Revision: [D43999888](https://our.internmc.facebook.com/intern/diff/D43999888)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95020
Approved by: https://github.com/zdevito
2023-03-14 01:22:19 +00:00
cyy
f27e09de04 Cleanup Windows warning suppression in CMake and fix some warnings in the source code (#94927)
This PR do two things:
1. It moves some Windows warning suppression from various CMake files into the main CMakeList.txt, following the conventions of gcc and clang.
2. It fixes some Windows warnings in the source code. Most importantly, it fixes lots of dll warnings by adjusting C10_API to TORCH_API or TORCH_PYTHON_API. There are still some dll warnings because some TORCH_API functions are actually built as part of libtorch_python

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94927
Approved by: https://github.com/malfet
2023-02-27 19:22:20 +00:00
Ramin Azarmehr
bdd8f518d7 [MPS] Add Python Module Bindings for the MPS backend (#94417)
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
  `torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`

Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
2023-02-12 21:22:30 +00:00
PyTorch MergeBot
4fe365774a Revert "[MPS] Add Python Module Bindings for the MPS backend (#94417)"
This reverts commit beb4f5bf39.

Reverted https://github.com/pytorch/pytorch/pull/94417 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it seems to break MacOS test in trunk bae397ec63
2023-02-11 05:24:45 +00:00
Ramin Azarmehr
beb4f5bf39 [MPS] Add Python Module Bindings for the MPS backend (#94417)
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
  `torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`

Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
2023-02-10 23:18:41 +00:00
Elias Ellison
70f4b3551c Add Hook to store arbitrary python objects that are copied over in tls (#89169)
For the cudagraphs implementation, we would like to reuse objects that are defined in python across the forward and backward. The backward is run in a different thread, so to handle this we add an api for copying over arbitrary python objects in pytorch's thread local state, in the same way that C++ objects are copied over currently.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89169
Approved by: https://github.com/albanD
2023-01-24 05:24:57 +00:00
Pearu Peterson
b3e4f5029b Add check-sparse-tensor-invariants flag to Context - 2nd try. (#92094)
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.

The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.

`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR fixes https://github.com/pytorch/pytorch/issues/90833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
2023-01-13 14:50:33 +00:00
PyTorch MergeBot
c7a22bb7c7 Revert "Add check-sparse-tensor-invariants flag to Context. (#90849)"
This reverts commit b9a035c1c5.

Reverted https://github.com/pytorch/pytorch/pull/90849 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-01-12 09:58:16 +00:00
samdow
b8252e07c7 [Reland] add DisableTorchFunction that matches DisableTorchDispatch (#88219) (#92012)
Reland of #88219

Closes #87990. This implements a new disable guard that matches DisableTorchDispatch (disables all subclasses and modes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92012
Approved by: https://github.com/albanD
2023-01-12 01:27:47 +00:00
Pearu Peterson
b9a035c1c5 Add check-sparse-tensor-invariants flag to Context. (#90849)
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR also fixes https://github.com/pytorch/pytorch/issues/90833

# Main issue

*The following content is outdated after merging the PRs in this ghstack but kept for the record.*

The importance of this feature is that when enabling the invariants checks by default, say, via

<details>

```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:

 # Populate magic methods on SymInt and SymFloat
 import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```

</details>

a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:

```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"

RuntimeError: CUDA error: device-side assert triggered

RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.

RuntimeError: expected col_indices to be a strided and contiguous tensor

RuntimeError: expected row_indices to be a strided and contiguous tensor

RuntimeError: expected values to be a strided and contiguous tensor

RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered

RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-01-11 01:05:14 +00:00
Samantha Andow
a7749ae177 [reland] rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218) (#89221)
Summary: First half of #87990. This doesn't change any of the behavior and is just a rename

#88218 got reverted for internal breakages. This is the reland of started from internal

Differential Revision:
D41268423

LaMa Project: L1098534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89221
Approved by: https://github.com/meliy-meyada, https://github.com/zou3519
2023-01-04 18:32:49 +00:00
Eddie Yan
8b617f813d [cuBLAS] Add an option to disable reduced precision reductions for BF16 GEMM (#89172)
Essentially the same change as #67946, except that the default is to disallow reduced precision reductions in `BFloat16` GEMMs (for now). If performance is severely regressed, we can change the default, but this option appears to be necessary to pass some `addmm` `BFloat16` tests on H100.

CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89172
Approved by: https://github.com/ngimel
2022-12-21 18:58:28 +00:00
albanD
28ceccec21 cleanup old python_compat code (#91162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91162
Approved by: https://github.com/ezyang
2022-12-20 18:13:19 +00:00
albanD
0eb45d546c Bind autograd current Node for debugging purposes (#90867)
This allows to know at any point during the backward pass what is running and where the Node currently running was created at:
```python
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.autograd import detect_anomaly

class MyMode(TorchDispatchMode):
    def __torch_dispatch__(self, func, types, args, kwargs=None):
        node = torch._C._current_autograd_node()
        print(f"Running {func} from within {node}")
        if node is not None:
            print("The Node was created at:")
            print("\n  ".join(node.metadata["traceback_"]))
        return func(*args, **kwargs or {})

with MyMode(), detect_anomaly():
    print("FW")
    a = torch.rand(10, requires_grad=True)
    b = a.mul(2)
    b = b.div(3)
    b = b.sum()
    print("BW")
    b.backward()
```

Gives
```
$ python foo.py
foo.py:15: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.
  with MyMode(), detect_anomaly():
FW
Running aten.rand.default from within None
Running aten.mul.Tensor from within None
Running aten.div.Tensor from within None
Running aten.sum.default from within None
BW
Running aten.ones_like.default from within None
Running aten.expand.default from within <SumBackward0 object at 0x7fa40c0c6dc0>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.isnan.default from within <SumBackward0 object at 0x7fa40c0c6500>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.any.default from within <SumBackward0 object at 0x7fa32b23a780>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten._local_scalar_dense.default from within <SumBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.div.Tensor from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.isnan.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.any.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten._local_scalar_dense.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.mul.Tensor from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.isnan.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.any.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten._local_scalar_dense.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c9730>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c94b0>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90867
Approved by: https://github.com/soulitzer
2022-12-20 13:41:43 +00:00
Nikita Shulga
3859aace20 [MPS] Skip tests broken on Ventura (#90843)
Also add `torch.backends.mps.is_macos13_or_newer`
See https://github.com/pytorch/pytorch/issues/85758

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90843
Approved by: https://github.com/kulinseth, https://github.com/albanD
2022-12-14 19:51:00 +00:00
Richard Zou
4b1053497c [vmap] Prepend "legacy" to files for old vmap implementation (#90324)
We have an older torch.vmap implementation. It is no longer supported.
It still needs to exist somewhere for the sake of BC with
torch.autograd.functional.

This PR makes it clear what files are meant for implementing the old
vmap implementation. I've seen a couple of PRs recently adding support
for the old vmap implementation, so this will lessen the confusion.

Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90324
Approved by: https://github.com/samdow
2022-12-07 18:46:15 +00:00
Edward Z. Yang
4908a12542 Reland "SymIntify convolution backend calculation (#89069)"" (#89142)
This reverts commit 90db86be10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89142
Approved by: https://github.com/albanD, https://github.com/malfet
2022-11-16 21:41:47 +00:00
PyTorch MergeBot
90db86be10 Revert "SymIntify convolution backend calculation (#89069)"
This reverts commit 09ed8b67e2.

Reverted https://github.com/pytorch/pytorch/pull/89069 on behalf of https://github.com/DanilBaibak due to breaking internal builds
2022-11-16 16:36:27 +00:00
Edward Z. Yang
09ed8b67e2 SymIntify convolution backend calculation (#89069)
We will need this to implement a convolution meta function that
is SymInt aware.  I use templates so that regular convolution code
is not affected by the change.  No tests for symbolic ints directly; that will
come in a subsequent PR which also needs to refactor fake tensors.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89069
Approved by: https://github.com/SherlockNoMad
2022-11-16 14:02:43 +00:00
PyTorch MergeBot
ba4d5aae06 Revert "rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)"
This reverts commit 7f28be10e5.

Reverted https://github.com/pytorch/pytorch/pull/88218 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:13:05 +00:00
PyTorch MergeBot
4e5d7afe84 Revert "add DisableTorchFunction that matches DisableTorchDispatch (#88219)"
This reverts commit c0ecce15b5.

Reverted https://github.com/pytorch/pytorch/pull/88219 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:08:30 +00:00
samdow
c0ecce15b5 add DisableTorchFunction that matches DisableTorchDispatch (#88219)
Closes #87990. This implements a new disable guard that matches DisableTorchDispatch (disables all subclasses and modes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88219
Approved by: https://github.com/ezyang
2022-11-10 14:51:13 +00:00
samdow
7f28be10e5 rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)
First half of #87990. This doesn't change any of the behavior and is just a rename

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88218
Approved by: https://github.com/ezyang, https://github.com/zou3519
2022-11-10 14:51:13 +00:00
kshitij12345
eb9b156019 [fix] MathBits: serialization (#88182)
Fixes #81690

TODO:

* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)

Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484

Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
2022-11-09 17:15:12 +00:00
Nikita Shulga
e1c123d29a Add UBSAN to ASAN (#88055)
Add undefined behavior sanitizer to `USE_ASAN` option.
Added `torch._C._crash_if_vptr_ubsan()` that only fails if vptr belongs to a wrong class after typecast
Deleted all ubsan supressions, but disabled `ProtoTest::Basic` as it fails above-mentioned vptr check.

Fixes https://github.com/pytorch/pytorch/issues/88042
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88055
Approved by: https://github.com/ezyang
2022-11-01 17:59:35 +00:00
Elias Ellison
fc21b9db23 Use Eager Code To Determine Conv Layout (#87305)
The logic for determine conv backend and therefore output striding is very complex. It depends on build settings, input striding/contiguity, sizes, etc. Eventually we should port that logic to the meta impl for dynamic shapes but that will require a lot more work and keeping the implementations in sync. See https://github.com/pytorch/torchdynamo/issues/1701

This is a prerequisite to removing the inductor conv stride propagation and more general fake tensor for inductor propagation. In that PR, the meta impls for cpu conv give incorrect striding which led to test failures (https://github.com/pytorch/pytorch/pull/87083).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87305
Approved by: https://github.com/ezyang
2022-10-28 16:37:04 +00:00
Driss Guessous
35c611d30f Add mem efficient backend flag (#87946)
# Summary
Add in a torch.backends.cuda flag and update context manager to pic between the three implementations of the scaled_dot_product_attention.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87946
Approved by: https://github.com/cpuhrsch
2022-10-28 15:51:10 +00:00
soulitzer
adb76ef510 Expose API for backward execution order (#87507)
In this PR:
- graph_task stores graph roots on construction so that we can later traverse through the graph
- before the nodes are returned, they needed to be converted from raw_ptr to shared_ptr, and this should be OK because the graph is guaranteed to be alive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87507
Approved by: https://github.com/albanD
2022-10-26 21:28:45 +00:00
Brian Hirsh
ce0c6e828e Reland "add an API for external backends to register custom device names (#86992)" (#87453)
Re-land of https://github.com/pytorch/pytorch/pull/86992

This reverts commit a895af9250.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87453
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-10-21 16:51:36 +00:00
PyTorch MergeBot
a895af9250 Revert "add an API for external backends to register custom device names (#86992)"
This reverts commit fb6826bfd8.

Reverted https://github.com/pytorch/pytorch/pull/86992 on behalf of https://github.com/jeanschmidt due to breaking internal builds - D40534212 - arstudio-windows-tests-landcastle-0
2022-10-20 14:51:08 +00:00
Brian Hirsh
fb6826bfd8 add an API for external backends to register custom device names (#86992)
This API adds some improvements to external backends who are building C++ backends out of tree using the `PrivateUse1` dispatch key.

The docs and linked examples go over the API in more detail, but you should be able to use it like:
```
# This should probably be in the __init__.py file of a external backend's python package
> torch.register_privateuse1_backend("foo")`
# And it will allow the user to do this:
> a = torch.ones(2, device="foo")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86992
Approved by: https://github.com/albanD
2022-10-19 16:44:17 +00:00
Kurt Mohler
1dbc8ad3b7 Add Warning class and refactor C++ warnings to use it (#84101)
Also adds `TORCH_WARN_WITH` and `TORCH_WARN_DEPRECATION` macros

Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84101
Approved by: https://github.com/albanD
2022-10-18 20:02:42 +00:00
Jason Ansel
f1fdb6efbd Manual changes for moving dynamo to core (#86621)
This is the subset of the changes in #86461 not auto-generated by `copy_to_core.sh`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86621
Approved by: https://github.com/albanD
2022-10-11 23:01:21 +00:00
Elias Ellison
d3f7c34cb3 Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-08 05:12:42 +00:00
PyTorch MergeBot
7ec12a559c Revert "Enable aten-aten decomps (#85921)"
This reverts commit 62e4f51efd.

Reverted https://github.com/pytorch/pytorch/pull/85921 on behalf of https://github.com/huydhn due to Sorry for reverting your PR. I think it breaks a dynamo test in trunk 62e4f51efd
2022-10-08 01:59:54 +00:00
soulitzer
ba3fde6aa0 Add multi-grad hooks (#86260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86260
Approved by: https://github.com/albanD
2022-10-07 21:16:45 +00:00
Elias Ellison
62e4f51efd Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-07 21:04:39 +00:00
Sahan Paliskara
936e93058b Delete torch::deploy from pytorch core (#85953)
As we have migrated torch::deploy over to https://github.com/pytorch/multipy, we can now delete it from pytorch core as ongoing development will happen there.

This PR was created due to syncing issues with https://github.com/pytorch/pytorch/pull/85443 which is where the review history can be found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85953
Approved by: https://github.com/seemethere, https://github.com/malfet
2022-10-06 07:20:16 +00:00
Elias Ellison
9da5646cdb Add device logic handling for functions which allow scalar inputs as tensors (#86149)
Some functions allow scalars as tensor inputs. Add handling for them in device logic.

Fix for https://github.com/pytorch/torchdynamo/issues/1445
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86149
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-10-04 18:54:00 +00:00
Driss Guessous
cd6477617c Custom sdp implementations dense (#85984)
# Summary

- This code creates the runtime dispatch system for choosing a performant fused SDP kernel. The only choice of fused kernel is flash_attention. It also creates python flags and a context manager that can be used to turn off and on behavior for dispatch.
- This also adds support for flash_attention with dense tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85984
Approved by: https://github.com/cpuhrsch
2022-10-03 17:36:37 +00:00
Elias Ellison
f183a989a2 Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh, https://github.com/huydhn
2022-10-02 04:19:40 +00:00
PyTorch MergeBot
b562987c28 Revert "Fix fake tensor kernel nesting (#85920)"
This reverts commit c2d9ea7f4b.

Reverted https://github.com/pytorch/pytorch/pull/85920 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but I suspect that it causes a flaky memory leak issue in TestFakeTensorCUDA.test_fake_crossref_backward_amp_linalg_lstsq_cuda_float32
2022-10-01 19:30:21 +00:00
Elias Ellison
c2d9ea7f4b Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-09-30 23:11:20 +00:00
soulitzer
a876432aea Expose torch._will_engine_execute_node (#84773)
Addresses: https://github.com/pytorch/pytorch/issues/83617

This PR a way to query the TLS graph task's exec_info which is a map mapping the Node to a bool indicating whether it will be executed in the current backward pass (as determined by the inputs= argument for .grad of .backward).
- this works with both custom Function nodes and normal codegened nodes
-  to be able to verify whether the pyobject passed is an actual node, we now store pointers to PyTypeObjects into a set on registration.
- error out when .backward without inputs= to avoid silently returning True

Alternatives:
- not sure if it is possible to bind to Python from a raw pointer to Node. At least we wouldn't be able to use existing logic, and the Python object should only hold a weak reference to the Node.
- other solutions to the motivating issue seem to require more extensive modification to the engine

See the issue linked for an example of usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84773
Approved by: https://github.com/albanD
2022-09-28 20:13:52 +00:00
Sherlock Huang
01dbbeeeb5 Expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-27 14:59:08 +00:00
Elias Ellison
bcc544e9d7 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-26 17:08:14 +00:00
PyTorch MergeBot
d10de31cc8 Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 78afa0cf0c.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk 78afa0cf0c
2022-09-23 17:21:43 +00:00
Elias Ellison
78afa0cf0c Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-23 15:50:03 +00:00
Richard Zou
5e5c319549 Move functorch python bindings to torch/csrc (#85426)
This moves functorch's python bindings to torch/csrc/functorch/init.cpp.
Coming next is the torchdim move. I didn't do torchdim yet because
moving functorch's python bindings unblocks some other things that I
want to do first.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85426
Approved by: https://github.com/ezyang
2022-09-22 18:47:12 +00:00
PyTorch MergeBot
5043457a8e Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 9c77083965.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk (and pull somehow) 9c77083965
2022-09-22 15:44:38 +00:00
Elias Ellison
9c77083965 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-22 13:03:57 +00:00
PyTorch MergeBot
3122a96ee4 Revert "Improve and expose cpp_backtrace to python binding (#84896)"
This reverts commit 73fbca1ea6.

Reverted https://github.com/pytorch/pytorch/pull/84896 on behalf of https://github.com/kit1980 due to Broke libtorch and linux-binary-manywheel - 73fbca1ea6
2022-09-21 03:13:20 +00:00
Sherlock Huang
73fbca1ea6 Improve and expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-21 01:32:33 +00:00
Aidyn-A
1456cca1fc Fix exception handling, improve overheads and avoid constructing storage for element size (#84612)
These changes were proposed by @MatthiasKohl in #84271 and #84542 that fix #84267 and #84056 respectively.
The reason I am creating the pull request is CLA check (see original PRs).

cc @ptrblck @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84612
Approved by: https://github.com/ngimel
2022-09-19 20:21:46 +00:00
soulitzer
7f88934a8f [reland 2] Call jit decomp in VariableType to improve forward AD coverage (#84976)
Reland of https://github.com/pytorch/pytorch/pull/84675
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84976
Approved by: https://github.com/zou3519
2022-09-15 22:46:19 +00:00
PyTorch MergeBot
36d79143ce Revert "[reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)"
This reverts commit bb4e96c964.

Reverted https://github.com/pytorch/pytorch/pull/84675 on behalf of https://github.com/osalpekar due to causing asan xplat link-time errors like ld.lld: error: undefined symbol: torch::jit::has_jit_decomposition(c10::FunctionSchema const&)
2022-09-13 22:54:54 +00:00
soulitzer
bb4e96c964 [reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)
This reverts commit acb4a09628.

In addition, we also fix a memory leak in layer norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84675
Approved by: https://github.com/zou3519
2022-09-12 20:33:14 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Taylor Robie
1fa9a377d0 [Profiler] Start moving python bindings out of autograd (#82584)
A lot of profiler code still lives in autograd for historic reasons. However as we formalize and clean up profiler internals it makes sense to pull more and more into the profiler folders/namespace. For now I'm just moving some of the core config data structures and those related to `torch::profiler::impl::Result` to keep the scope manageable.

Differential Revision: [D37961462](https://our.internmc.facebook.com/intern/diff/D37961462/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D37961462/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82584
Approved by: https://github.com/albanD, https://github.com/Gamrix
2022-08-19 17:15:18 +00:00
Edward Z. Yang
df69660832 Revert "Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"" (#82599)
This reverts commit 532b8a9e00.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82599
Approved by: https://github.com/albanD
2022-08-02 19:37:02 +00:00
Elias Ellison
642aed8b99 Add Autocast Support for FakeTensors / use fake device dispatch keys (#82449)
From PR:
```
Note: [Fake Tensor Dispatch Keys]
In order to model the behavior of device-specific autocast
and autograd logic, we update the dispatch keys of FakeTensors
to reflect their fake device. This includes the BackendComponent
(DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
related Autocast and Autograd keys. __torch__dispatch__ sits below
Autocast and Autograd, and is only invoked when we are at the
kernel for the BackendComponent. Then, we add Meta to the
thread-local dispatch include set to hit the meta kernel
instead of the kernel of the BackendComponent for the fake device.
```

Also adds the `conv1/2/3d.padding` operators to the Autocast rule set. Without that fix, the FakeTensor dtype would diverge.

See: https://github.com/pytorch/pytorch/issues/81608

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82449
Approved by: https://github.com/ezyang
2022-08-01 21:40:36 +00:00
PyTorch MergeBot
532b8a9e00 Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"
This reverts commit 9465c0e0b5.

Reverted https://github.com/pytorch/pytorch/pull/82552 on behalf of https://github.com/zengk95 due to This seems to be breaking windows binary wheels
2022-08-01 20:25:35 +00:00
Edward Z. Yang
9465c0e0b5 Add a lint rule for torch/csrc/util/pybind.h include (#82552)
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.

The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.

The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features.  I'm open to suggestions
for how to structure the features better.  The main changes:

- Added an --allowlist-pattern flag, which turns off the grep lint
  if some other line exists.  This is used to stop the grep
  lint from complaining about pybind11 includes if the util
  include already exists.

- Added --match-first-only flag, which lets grep only match against
  the first matching line.  This is because, even if there are multiple
  includes that are problematic, I only need to fix one of them.
  We don't /really/ need this, but when I was running lintrunner -a
  to fixup the preexisting codebase it was annoying without this,
  as the lintrunner overall driver fails if there are multiple edits
  on the same file.

I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.

Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.

See also https://github.com/pybind/pybind11/issues/4099

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
2022-08-01 17:16:58 +00:00
Jing Xu
0e95746580 [RFC] enable oneMKL&oneDNN on-demands verbose functinality (#63212)
**RFC:
Problem statement** 
Intel oneMKL and oneDNN are used to accelerate performance on Intel platforms. Both these 2 libraries provide verbose functionality to dump detailed operator execution information as well as execution time. These verbose messages are very helpful to performance profiling. However, the verbose functionality works for the entire execution. In many scenarios, though, we only would like to profile partial of the execution process. This feature is to expose PyTorch API functions to control oneDNN and oneMKL verbose functionality in runtime.

**Additional context**  
The most used performance profiling steps are shown as the following code snippet:

```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling. We only care the profiling result, as well as oneDNN and oneMKL verbose messages, of this step
    model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```

Since environment variables MKL_VERBOSE and DNNL_VERBOSE will be effect to the entire progress, we will get a great number of verbose messages for all of 101 iterations (if step3 is not involved). However, we only care about the verbose messages dumped in step2. It is very difficult to filter unnecessary verbose messages out if we are running into a complicated usages scenario. Also, jit trace will also bring more undesired verbose messages.

Furthermore, there are more complicated topologies or usages like cascaded topologies as below:

```
model1 = Model1()
model2 = Model2()
model3 = Model3()
x1 = inference(model1, x)
x2 = inference(model2, x1)
y = inference(model3, x2)
```

There are many cases that it is very hard to split these child topologies out. In this scenario, it is not possible to investigate performance of each individual topology with `DNNL_VERBOSE` and `MKL_VERBOSE`.

To solve this issue, oneDNN and oneMKL provide API functions to make it possible to control verbose functionality in runtime.
```
int mkl_verbose (int enable)
status dnnl::set_verbose(int level)
```

oneDNN and oneMKL print verbose messages to stdout when oneMKL or oneDNN ops are executed.
Sample verbose messages:
```
MKL_VERBOSE SGEMM(t,n,768,2048,3072,0x7fff64115800,0x7fa1aca58040,3072,0x1041f5c0,3072,0x7fff64115820,0x981f0c0,768) 8.52ms CNR:OFF Dyn:1 FastMM:1 TID:0  NThr:44
dnnl_verbose,exec,cpu,inner_product,brgemm:avx512_core,forward_training,src_f32::blocked:ab:f0 wei_f32::blocked:AB16b64a:f0 bia_f32::blocked:a:f0 dst_f32::blocked:ab:f0,,,mb16ic768oc768,0.0839844
```

**Design and implementation** 
The design is to make python-interfaced wrap functions to invoke mkl_verbose and dnnl::set_verbose functions.

**Design concern**  

- Need to add wrapper C++ functions for mkl_verbose and dnnl::set_verbose functions in torch/csrc and aten/csrc.
- Python API functions will be added to device-specific backends
  - with torch.backends.mkl.verbose(1):
  - with torch.backends.mkldnn.verbose(1):

**Use cases**  
```
def inference(model, inputs):
    # step0 (optional): jit
    model = torch.jit.trace(model, inputs)

    # step1: warmup
    for _ in range(100):
        model(inputs)

    # step2: performance profiling
    with torch.backends.mkl.verbose(1), torch.backends.mkldnn.verbose(1):
        model(inputs)

    # step3 (optional): benchmarking
    t0 = time.time()
    for _ in range(100):
        model(inputs)
    t1 = time.time()
    print(‘dur: {}’.format((t1-t0)/100))
    return model(inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63212
Approved by: https://github.com/VitalyFedyunin, https://github.com/malfet
2022-07-27 23:29:35 +00:00
Jing Xu
3c7044728b Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)
More detailed description of benefits can be found at #41001. This is Intel's counterpart of NVidia’s NVTX (https://pytorch.org/docs/stable/autograd.html#torch.autograd.profiler.emit_nvtx).

ITT is a functionality for labeling trace data during application execution across different Intel tools.
For integrating Intel(R) VTune Profiler into Kineto, ITT needs to be integrated into PyTorch first. It works with both standalone VTune Profiler [(https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html](https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html)) and Kineto-integrated VTune functionality in the future.
It works for both Intel CPU and Intel XPU devices.

Pitch
Add VTune Profiler's ITT API function calls to annotate PyTorch ops, as well as developer customized code scopes on CPU, like NVTX for NVidia GPU.

This PR rebases the code changes at https://github.com/pytorch/pytorch/pull/61335 to the latest master branch.

Usage example:
```
with torch.autograd.profiler.emit_itt():
    for i in range(10):
        torch.itt.range_push('step_{}'.format(i))
        model(input)
        torch.itt.range_pop()
```

cc @ilia-cher @robieta @chaekit @gdankel @bitfort @ngimel @orionr @nbcsm @guotuofeng @guyang3532 @gaoteng-git
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63289
Approved by: https://github.com/malfet
2022-07-13 13:50:15 +00:00
PyTorch MergeBot
1454515253 Revert "Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)"
This reverts commit f988aa2b3f.

Reverted https://github.com/pytorch/pytorch/pull/63289 on behalf of https://github.com/malfet due to broke trunk, see f988aa2b3f
2022-06-30 12:49:41 +00:00
Jing Xu
f988aa2b3f Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)
More detailed description of benefits can be found at #41001. This is Intel's counterpart of NVidia’s NVTX (https://pytorch.org/docs/stable/autograd.html#torch.autograd.profiler.emit_nvtx).

ITT is a functionality for labeling trace data during application execution across different Intel tools.
For integrating Intel(R) VTune Profiler into Kineto, ITT needs to be integrated into PyTorch first. It works with both standalone VTune Profiler [(https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html](https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html)) and Kineto-integrated VTune functionality in the future.
It works for both Intel CPU and Intel XPU devices.

Pitch
Add VTune Profiler's ITT API function calls to annotate PyTorch ops, as well as developer customized code scopes on CPU, like NVTX for NVidia GPU.

This PR rebases the code changes at https://github.com/pytorch/pytorch/pull/61335 to the latest master branch.

Usage example:
```
with torch.autograd.profiler.emit_itt():
    for i in range(10):
        torch.itt.range_push('step_{}'.format(i))
        model(input)
        torch.itt.range_pop()
```

cc @ilia-cher @robieta @chaekit @gdankel @bitfort @ngimel @orionr @nbcsm @guotuofeng @guyang3532 @gaoteng-git
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63289
Approved by: https://github.com/malfet
2022-06-30 05:14:03 +00:00
Michael Suo
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
anjali411
38350acf8f Autogen Tags enum, and allow specifying tags while defining an op
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79322

Approved by: https://github.com/albanD
2022-06-11 00:29:32 +00:00
Elias Ellison
3c5a3ca9e8 Make FakeTensors return meta within kerenl invocation, add FakeTensor op tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78972

Approved by: https://github.com/ezyang
2022-06-09 01:39:27 +00:00
PyTorch MergeBot
954522a485 Revert "Autogen Tags enum, and allow specifying tags while defining an op"
This reverts commit 9476a78f37.

Reverted https://github.com/pytorch/pytorch/pull/77313 on behalf of https://github.com/malfet due to Broke OSS buck builds, see 9476a78f37
2022-06-03 01:53:53 +00:00
anjali411
9476a78f37 Autogen Tags enum, and allow specifying tags while defining an op
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77313

Approved by: https://github.com/ezyang, https://github.com/albanD
2022-06-03 01:13:44 +00:00
PyTorch MergeBot
b994ce359e Revert "[cuDNN V8 API] (reopen) Allow the number of kernels profiled under torch.backends.cudnn.benchmark = True to be limitedCudnnv8 benchmark limit (#77002)"
This reverts commit c274f2ad52.

Reverted https://github.com/pytorch/pytorch/pull/77002 on behalf of https://github.com/malfet due to please, as it breaks internal CI, but also no CUDA heads should be included from `torch/csrc/Module.cpp`, but rather should be implemented/registered in `torch/csrc/cuda/Module.cpp`
2022-05-24 21:52:35 +00:00
Nikita Shulga
6244daa6a9 [MPS] Fix torch.mps.is_available() (#78121)
By introducing `at:mps::is_available()` and changing `torch._C._is_mps_available` from property to memoizable callable

Also, if `_mtl_device` is released in MPSDevice destructor, shouldn't it be retained in the constructor

Looks like GitHubActions Mac runner does not have any Metal devices available, according to https://github.com/malfet/deleteme/runs/6560871657?check_suite_focus=true#step:3:15

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78121
Approved by: https://github.com/albanD
2022-05-24 05:10:38 +00:00
Eddie Yan
c274f2ad52 [cuDNN V8 API] (reopen) Allow the number of kernels profiled under torch.backends.cudnn.benchmark = True to be limitedCudnnv8 benchmark limit (#77002)
(reopening due to botched merge)
The cuDNN V8 API (main support merged in https://github.com/pytorch/pytorch/pull/60755) potentially exposes many more kernels with benchmark=True. While these additional kernels can improve performance, it is often unnecessary to run every kernel returned by the heuristic and doing so may degrade the user experience by causing the first model iteration to be very slow. To alleviate this issue, this PR introduces torch.backends.cudnn.benchmark_limit. benchmark_limit specifies the maximum number of working cuDNN kernels to try for a given workload, with the default being 10 (similar to what TensorFlow does). benchmark_limit = 0 yields the current behavior of trying every kernel returned by the heuristic.

CC @ptrblck @ngimel @xwang233
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77002
Approved by: https://github.com/ngimel
2022-05-24 00:11:47 +00:00
Jeff Daily
9aed30d3ad [ROCm] support benchmark flag for MIOpen (#77438)
Fixes #68172.  Generally, this corrects multiple flaky convolution unit test behavior seen on ROCm.

The MIOpen integration has been forcing benchmark=True when calling `torch._C._set_cudnn_benchmark(False)`, typically called by `torch.backends.cudnn.set_flags(enabled=True, benchmark=False)`.  We now add support for MIOpen immediate mode to avoid benchmarking during MIOpen solution selection.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77438
Approved by: https://github.com/ngimel, https://github.com/malfet
2022-05-23 17:10:24 +00:00
Kurt Mohler
aea6e2c396 Merge torch.cuda._UntypedStorage into torch._UntypedStorage (#75459)
Fixes #74933

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75459
Approved by: https://github.com/ezyang
2022-05-19 13:54:39 +00:00
Kulin Seth
f348b1b2b5 Add the Runtime components for MPS backend. (#76725)
The PR adds the runtime components and few basic operations like copy, as_strided for MPS backend.

Current list of identified TODOs are:

-  https://github.com/pytorch/pytorch/issues/77176
- Unify the logic with CUDACachingAllocator and remove redundant code.
-  https://github.com/pytorch/pytorch/issues/77170
- Look into using C++ smart pointers where possible with ObjC code
- Use empty_strided_generic() to implement the `empty_strided_mps` code
- https://github.com/pytorch/pytorch/issues/77144
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76725
Approved by: https://github.com/albanD
2022-05-11 17:19:45 +00:00
Eddie Yan
e838137b3e Add high level control of fp32 matmul precision; disable TF32 for matmuls by default
#76440

CC @mruberry @ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76509
Approved by: https://github.com/ngimel
2022-05-04 20:40:13 +00:00
Nikita Shulga
8473173c36 Remove breakpad dependency
This functionality does not seem to be used
and there are some requests to update dependency.

Add `third_party` to torch_cpu include directories if compiling with
Caffe2 support, as `caffe2/quantization/server/conv_dnnlowp_op.cc` depends on `third_party/fbgemm/src/RefImplementations.h`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75394
Approved by: https://github.com/janeyx99, https://github.com/seemethere
2022-05-03 20:21:55 +00:00
Kulin Seth
54c75e1e8f Add "mps" device to PyTorch framework.
Remove the "mlc" device for Mac platforms.

This commit will be followed up with:

* adding MPS runtime components
* PyTorch ops for MPS device

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76291
Approved by: https://github.com/albanD
2022-04-27 19:21:57 +00:00
Peter Bell
58fb3f018e Fix conjugate bit discrepancy in composite compliance
When testing composite compliance, the conj bit and neg bit are not
propagated to the wrapper tensor. This leads to problems when a
composite operator has two paths depending on whether one of these
bits are set, since the non-conjugated path will always be taken.

For example, `at::real` effectively does
```cpp
view_as_real(tensor.is_conj() ? tensor.conj() : tensor)
```
which will never call `conj()` because the `CompositeCompliantTensor`
never has has the conj bit set. The result is `view_as_real` fails
when `r.elem` does have the conj bit set.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75830

Approved by: https://github.com/zou3519
2022-04-19 13:59:28 +00:00
PyTorch MergeBot
d79d9fa283 Revert "Remove breakpad dependency"
This reverts commit 9aa3c7fd83.

Reverted https://github.com/pytorch/pytorch/pull/75394 on behalf of https://github.com/malfet
2022-04-17 17:58:51 +00:00
Nikita Shulga
9aa3c7fd83 Remove breakpad dependency
This functionality does not seem to be used
and there are some requests to update dependency

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75394
Approved by: https://github.com/janeyx99, https://github.com/seemethere
2022-04-17 17:43:45 +00:00
Edward Z. Yang
35cfa74f97 Add a default implementation of __torch_dispatch__
I was working on an explanation of how to call into the "super"
implementation of some given ATen operation inside of __torch_dispatch__
(https://github.com/albanD/subclass_zoo/blob/main/trivial_tensors.py)
and I kept thinking to myself "Why doesn't just calling super() on
__torch_dispatch__ work"?  Well, after this patch, it does!  The idea
is if you don't actually unwrap the input tensors, you can call
super().__torch_dispatch__ to get at the original behavior.

Internally, this is implemented by disabling PythonKey and then
redispatching.  This implementation of disabled_torch_dispatch is
not /quite/ right, and some reasons why are commented in the code.
There is then some extra work I have to do to make sure we recognize
disabled_torch_dispatch as the "default" implementation (so we don't
start slapping PythonKey on all tensors, including base Tensors),
which is modeled the same way as how disabled_torch_function is done.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73684

Approved by: albanD
2022-03-03 20:19:33 +00:00
Can Balioglu
7366724e07 Introduce an environment variable to change c10 log level (#71746)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71746

This PR contains the following improvements:

- It exposes a new environment variable `TORCH_CPP_LOG_LEVEL` that enables users to set the log level of c10 logging facility (supports both GLOG and c10 loggers). Valid values are `INFO`, `WARNING`, `ERROR`, and `FATAL` or their numerical equivalents `0`, `1`, `2`, and `3`.
- It implements an `initLogging()` function and calls it as part of `torch._C` module import to ensure that the underlying logging facility is correctly initialized in Python.

With these changes a user can dynamically set the log level of c10 as in the following example:

```
$ TORCH_CPP_LOG_LEVEL=INFO python my_torch_script.py
```
ghstack-source-id: 149822703

Test Plan: Run existing tests.

Reviewed By: malfet

Differential Revision: D33756252

fbshipit-source-id: 7fd078c03a598595d992de0b474a23cec91838af
(cherry picked from commit 01d6ec6207faedf259ed1368730e9e197cb3e1c6)
2022-02-24 14:34:01 +00:00
Alban Desmaison
7807a83f6e Fix error handling TestSetDefaultMobileCPUAllocator
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73207
2022-02-22 19:45:49 +00:00
Will Constable
328cfd50e7 Move debug_util and python_util to torch/csrc/lazy (#72607)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72607

since python isn't available from libtorch, most of lazy tensor
code can't depend on python.
separate python_util into libtorch_python library
make debug_util and IR dump work with or without python by providing
a default function for 'maybe getting python stacktrace' that returns
an empty stacktrace
use a registration mechanism on libtorch_python library load to update
the 'maybe' function to use the real python stacktrace getter

Test Plan:
OSS build tests:
- test_ptltc by itself works
- LTC_SAVE_TENSORS_FILE=log test_ptltc works, and log contains
empty stacktrces
- python examply.py by itself works
- LTC_SAVE_TENSORS_FILE=log test_ptltc works, and log contains
real stacktraces

fbcode build: rely on CI to run test/lazy

Reviewed By: desertfire

Differential Revision: D34115046

fbshipit-source-id: 8d6222963c146da36b3c1b5ff8a638bbc3f1442e
(cherry picked from commit 3717688ade)
2022-02-11 18:00:40 +00:00
Tristan Rice
bfe1abd3b5 torch/monitor: add pybind (#69567)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69567

This exposes torch.monitor events and stats via pybind11 to the underlying C++ implementation.

* The registration interface is a tad different since it takes a lambda function in Python where as in C++ it's a full class.
* This has a small amount of changes to the counter interfaces since there's no way to create an initializer list at runtime so they now also take a vector.
* Only double based stats are provided in Python since it's intended more for high level stats where float imprecision shouldn't be an issue. This can be changed down the line if need arises.

```
events = []

def handler(event):
    events.append(event)

handle = register_event_handler(handler)

log_event(Event(type="torch.monitor.TestEvent", timestamp=datetime.now(), metadata={"foo": 1.0}))
```

D32969391 is now included in this diff.
This cleans up the naming for events. type is now name, message is gone, and metadata is renamed data.

Test Plan: buck test //caffe2/test:monitor //caffe2/test/cpp/monitor:monitor

Reviewed By: kiukchung

Differential Revision: D32924141

fbshipit-source-id: 563304c2e3261a4754e40cca39fc64c5a04b43e8
2022-01-12 13:35:11 -08:00
Peter Bell
b08d64202a Remove THGeneral (#69041)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69041

`TH_CONCAT_{N}` is still being used by THP so I've moved that into
it's own header but all the compiled code is gone.

Test Plan: Imported from OSS

Reviewed By: anjali411

Differential Revision: D32872477

Pulled By: ngimel

fbshipit-source-id: 06c82d8f96dbcee0715be407c61dfc7d7e8be47a
2021-12-13 16:14:28 -08:00
kshitij12345
b737e09f60 expose return_types in Python (#66614)
Summary:
https://github.com/facebookresearch/functorch/issues/87

TODO:
* [x] Add comments
* [x] Add test
* [x] Fix XLA

<details>

<summary>Generated python_return_types.cpp</summary>

```cpp
#include <Python.h>

#include <vector>
#include <map>
#include <string>

#include "torch/csrc/autograd/python_return_types.h"
#include "torch/csrc/utils/structseq.h"
#include "torch/csrc/Exceptions.h"

namespace {
PyTypeObject* get__det_lu_based_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"det", ""}, {"lu", ""}, {"pivs", ""},  {nullptr} };
    static PyTypeObject _det_lu_based_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._det_lu_based_helper", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_det_lu_based_helperNamedTuple, &desc);
        _det_lu_based_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_det_lu_based_helperNamedTuple;
}
PyTypeObject* get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple, &desc);
        _fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fake_quantize_per_tensor_affine_cachemask_tensor_qparamsNamedTuple;
}
PyTypeObject* get__fused_moving_avg_obs_fq_helper_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"output", ""}, {"mask", ""},  {nullptr} };
    static PyTypeObject _fused_moving_avg_obs_fq_helperNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._fused_moving_avg_obs_fq_helper", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_fused_moving_avg_obs_fq_helperNamedTuple, &desc);
        _fused_moving_avg_obs_fq_helperNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_fused_moving_avg_obs_fq_helperNamedTuple;
}
PyTypeObject* get__lu_with_info_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"LU", ""}, {"pivots", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject _lu_with_infoNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._lu_with_info", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_lu_with_infoNamedTuple, &desc);
        _lu_with_infoNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_lu_with_infoNamedTuple;
}
PyTypeObject* get__unpack_dual_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"primal", ""}, {"tangent", ""},  {nullptr} };
    static PyTypeObject _unpack_dualNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types._unpack_dual", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&_unpack_dualNamedTuple, &desc);
        _unpack_dualNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &_unpack_dualNamedTuple;
}
PyTypeObject* get_aminmax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmaxNamedTuple, &desc);
        aminmaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmaxNamedTuple;
}

PyTypeObject* get_aminmax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"min", ""}, {"max", ""},  {nullptr} };
    static PyTypeObject aminmax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.aminmax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&aminmax_outNamedTuple1, &desc);
        aminmax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &aminmax_outNamedTuple1;
}
PyTypeObject* get_cummax_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummaxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummaxNamedTuple, &desc);
        cummaxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummaxNamedTuple;
}

PyTypeObject* get_cummax_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummax_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummax_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummax_outNamedTuple1, &desc);
        cummax_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummax_outNamedTuple1;
}
PyTypeObject* get_cummin_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cumminNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cumminNamedTuple, &desc);
        cumminNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cumminNamedTuple;
}

PyTypeObject* get_cummin_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject cummin_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.cummin_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&cummin_outNamedTuple1, &desc);
        cummin_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &cummin_outNamedTuple1;
}
PyTypeObject* get_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eig_outNamedTuple, &desc);
        eig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eig_outNamedTuple;
}

PyTypeObject* get_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject eigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&eigNamedTuple1, &desc);
        eigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &eigNamedTuple1;
}
PyTypeObject* get_frexp_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexpNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexpNamedTuple, &desc);
        frexpNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexpNamedTuple;
}

PyTypeObject* get_frexp_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"mantissa", ""}, {"exponent", ""},  {nullptr} };
    static PyTypeObject frexp_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.frexp_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&frexp_outNamedTuple1, &desc);
        frexp_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &frexp_outNamedTuple1;
}
PyTypeObject* get_geqrf_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrf_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrf_outNamedTuple, &desc);
        geqrf_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrf_outNamedTuple;
}

PyTypeObject* get_geqrf_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"a", ""}, {"tau", ""},  {nullptr} };
    static PyTypeObject geqrfNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.geqrf", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&geqrfNamedTuple1, &desc);
        geqrfNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &geqrfNamedTuple1;
}
PyTypeObject* get_histogram_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogram_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogram_outNamedTuple, &desc);
        histogram_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogram_outNamedTuple;
}

PyTypeObject* get_histogram_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"hist", ""}, {"bin_edges", ""},  {nullptr} };
    static PyTypeObject histogramNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.histogram", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&histogramNamedTuple1, &desc);
        histogramNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &histogramNamedTuple1;
}
PyTypeObject* get_kthvalue_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalueNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalueNamedTuple, &desc);
        kthvalueNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalueNamedTuple;
}

PyTypeObject* get_kthvalue_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject kthvalue_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.kthvalue_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&kthvalue_outNamedTuple1, &desc);
        kthvalue_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &kthvalue_outNamedTuple1;
}
PyTypeObject* get_linalg_cholesky_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_exNamedTuple, &desc);
        linalg_cholesky_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_exNamedTuple;
}

PyTypeObject* get_linalg_cholesky_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"L", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_cholesky_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_cholesky_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_cholesky_ex_outNamedTuple1, &desc);
        linalg_cholesky_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_cholesky_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_eig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigNamedTuple, &desc);
        linalg_eigNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigNamedTuple;
}

PyTypeObject* get_linalg_eig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eig_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eig_outNamedTuple1, &desc);
        linalg_eig_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eig_outNamedTuple1;
}
PyTypeObject* get_linalg_eigh_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eighNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eighNamedTuple, &desc);
        linalg_eighNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eighNamedTuple;
}

PyTypeObject* get_linalg_eigh_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject linalg_eigh_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_eigh_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_eigh_outNamedTuple1, &desc);
        linalg_eigh_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_eigh_outNamedTuple1;
}
PyTypeObject* get_linalg_inv_ex_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_exNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_exNamedTuple, &desc);
        linalg_inv_exNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_exNamedTuple;
}

PyTypeObject* get_linalg_inv_ex_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"inverse", ""}, {"info", ""},  {nullptr} };
    static PyTypeObject linalg_inv_ex_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_inv_ex_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_inv_ex_outNamedTuple1, &desc);
        linalg_inv_ex_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_inv_ex_outNamedTuple1;
}
PyTypeObject* get_linalg_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsqNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsqNamedTuple, &desc);
        linalg_lstsqNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsqNamedTuple;
}

PyTypeObject* get_linalg_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"residuals", ""}, {"rank", ""}, {"singular_values", ""},  {nullptr} };
    static PyTypeObject linalg_lstsq_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_lstsq_out", nullptr, NamedTuple_fields, 4 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_lstsq_outNamedTuple1, &desc);
        linalg_lstsq_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_lstsq_outNamedTuple1;
}
PyTypeObject* get_linalg_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qrNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qrNamedTuple, &desc);
        linalg_qrNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qrNamedTuple;
}

PyTypeObject* get_linalg_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject linalg_qr_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_qr_outNamedTuple1, &desc);
        linalg_qr_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_qr_outNamedTuple1;
}
PyTypeObject* get_linalg_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdetNamedTuple, &desc);
        linalg_slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdetNamedTuple;
}

PyTypeObject* get_linalg_slogdet_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject linalg_slogdet_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_slogdet_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_slogdet_outNamedTuple1, &desc);
        linalg_slogdet_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_slogdet_outNamedTuple1;
}
PyTypeObject* get_linalg_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svd_outNamedTuple, &desc);
        linalg_svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svd_outNamedTuple;
}

PyTypeObject* get_linalg_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"Vh", ""},  {nullptr} };
    static PyTypeObject linalg_svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.linalg_svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&linalg_svdNamedTuple1, &desc);
        linalg_svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &linalg_svdNamedTuple1;
}
PyTypeObject* get_lstsq_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsq_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsq_outNamedTuple, &desc);
        lstsq_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsq_outNamedTuple;
}

PyTypeObject* get_lstsq_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"QR", ""},  {nullptr} };
    static PyTypeObject lstsqNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lstsq", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lstsqNamedTuple1, &desc);
        lstsqNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lstsqNamedTuple1;
}
PyTypeObject* get_lu_unpack_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpackNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpackNamedTuple, &desc);
        lu_unpackNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpackNamedTuple;
}

PyTypeObject* get_lu_unpack_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"P", ""}, {"L", ""}, {"U", ""},  {nullptr} };
    static PyTypeObject lu_unpack_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.lu_unpack_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&lu_unpack_outNamedTuple1, &desc);
        lu_unpack_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &lu_unpack_outNamedTuple1;
}
PyTypeObject* get_max_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject maxNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&maxNamedTuple, &desc);
        maxNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &maxNamedTuple;
}

PyTypeObject* get_max_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject max_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.max_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&max_outNamedTuple1, &desc);
        max_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &max_outNamedTuple1;
}
PyTypeObject* get_median_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject medianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&medianNamedTuple, &desc);
        medianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &medianNamedTuple;
}

PyTypeObject* get_median_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject median_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.median_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&median_outNamedTuple1, &desc);
        median_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &median_outNamedTuple1;
}
PyTypeObject* get_min_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject minNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&minNamedTuple, &desc);
        minNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &minNamedTuple;
}

PyTypeObject* get_min_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject min_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.min_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&min_outNamedTuple1, &desc);
        min_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &min_outNamedTuple1;
}
PyTypeObject* get_mode_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject modeNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&modeNamedTuple, &desc);
        modeNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &modeNamedTuple;
}

PyTypeObject* get_mode_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject mode_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.mode_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&mode_outNamedTuple1, &desc);
        mode_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &mode_outNamedTuple1;
}
PyTypeObject* get_nanmedian_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedianNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedianNamedTuple, &desc);
        nanmedianNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedianNamedTuple;
}

PyTypeObject* get_nanmedian_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject nanmedian_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.nanmedian_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&nanmedian_outNamedTuple1, &desc);
        nanmedian_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &nanmedian_outNamedTuple1;
}
PyTypeObject* get_qr_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qr_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qr_outNamedTuple, &desc);
        qr_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qr_outNamedTuple;
}

PyTypeObject* get_qr_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"Q", ""}, {"R", ""},  {nullptr} };
    static PyTypeObject qrNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.qr", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&qrNamedTuple1, &desc);
        qrNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &qrNamedTuple1;
}
PyTypeObject* get_slogdet_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"sign", ""}, {"logabsdet", ""},  {nullptr} };
    static PyTypeObject slogdetNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.slogdet", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&slogdetNamedTuple, &desc);
        slogdetNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &slogdetNamedTuple;
}
PyTypeObject* get_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solveNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solveNamedTuple, &desc);
        solveNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solveNamedTuple;
}

PyTypeObject* get_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"LU", ""},  {nullptr} };
    static PyTypeObject solve_outNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&solve_outNamedTuple1, &desc);
        solve_outNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &solve_outNamedTuple1;
}
PyTypeObject* get_sort_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sort_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sort_outNamedTuple, &desc);
        sort_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sort_outNamedTuple;
}

PyTypeObject* get_sort_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject sortNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.sort", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&sortNamedTuple1, &desc);
        sortNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &sortNamedTuple1;
}
PyTypeObject* get_svd_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svd_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd_out", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svd_outNamedTuple, &desc);
        svd_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svd_outNamedTuple;
}

PyTypeObject* get_svd_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"U", ""}, {"S", ""}, {"V", ""},  {nullptr} };
    static PyTypeObject svdNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.svd", nullptr, NamedTuple_fields, 3 };
    if (!is_initialized) {
        PyStructSequence_InitType(&svdNamedTuple1, &desc);
        svdNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &svdNamedTuple1;
}
PyTypeObject* get_symeig_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeig_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeig_outNamedTuple, &desc);
        symeig_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeig_outNamedTuple;
}

PyTypeObject* get_symeig_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"eigenvalues", ""}, {"eigenvectors", ""},  {nullptr} };
    static PyTypeObject symeigNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.symeig", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&symeigNamedTuple1, &desc);
        symeigNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &symeigNamedTuple1;
}
PyTypeObject* get_topk_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topk_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topk_outNamedTuple, &desc);
        topk_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topk_outNamedTuple;
}

PyTypeObject* get_topk_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"values", ""}, {"indices", ""},  {nullptr} };
    static PyTypeObject topkNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.topk", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&topkNamedTuple1, &desc);
        topkNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &topkNamedTuple1;
}
PyTypeObject* get_triangular_solve_out_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solve_outNamedTuple;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve_out", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solve_outNamedTuple, &desc);
        triangular_solve_outNamedTuple.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solve_outNamedTuple;
}

PyTypeObject* get_triangular_solve_namedtuple() {
    static PyStructSequence_Field NamedTuple_fields[] = { {"solution", ""}, {"cloned_coefficient", ""},  {nullptr} };
    static PyTypeObject triangular_solveNamedTuple1;
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = { "torch.return_types.triangular_solve", nullptr, NamedTuple_fields, 2 };
    if (!is_initialized) {
        PyStructSequence_InitType(&triangular_solveNamedTuple1, &desc);
        triangular_solveNamedTuple1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }
    return &triangular_solveNamedTuple1;
}
}

namespace torch {
namespace autograd {

std::map<std::string, PyTypeObject*>& get_namedtuple_types_map() {
  // [NOTE] Non-global map
  // This map calls Python functions during its initialization.
  // If it is a global static variable and in case it is loaded
  // before Python interpreter is ready, then the calls it makes during
  // initialization will SEGFAULT.
  // To avoid this we make it function static variable so that it is
  // initialized only after the Python interpreter is ready.
  static std::map<std::string, PyTypeObject*> namedtuple_types_map = {
    {"_det_lu_based_helper", get__det_lu_based_helper_namedtuple()},
    {"_fake_quantize_per_tensor_affine_cachemask_tensor_qparams", get__fake_quantize_per_tensor_affine_cachemask_tensor_qparams_namedtuple()},
    {"_fused_moving_avg_obs_fq_helper", get__fused_moving_avg_obs_fq_helper_namedtuple()},
    {"_lu_with_info", get__lu_with_info_namedtuple()},
    {"_unpack_dual", get__unpack_dual_namedtuple()},
    {"aminmax", get_aminmax_namedtuple()},
    {"aminmax_out", get_aminmax_out_namedtuple()},
    {"cummax", get_cummax_namedtuple()},
    {"cummax_out", get_cummax_out_namedtuple()},
    {"cummin", get_cummin_namedtuple()},
    {"cummin_out", get_cummin_out_namedtuple()},
    {"eig_out", get_eig_out_namedtuple()},
    {"eig", get_eig_namedtuple()},
    {"frexp", get_frexp_namedtuple()},
    {"frexp_out", get_frexp_out_namedtuple()},
    {"geqrf_out", get_geqrf_out_namedtuple()},
    {"geqrf", get_geqrf_namedtuple()},
    {"histogram_out", get_histogram_out_namedtuple()},
    {"histogram", get_histogram_namedtuple()},
    {"kthvalue", get_kthvalue_namedtuple()},
    {"kthvalue_out", get_kthvalue_out_namedtuple()},
    {"linalg_cholesky_ex", get_linalg_cholesky_ex_namedtuple()},
    {"linalg_cholesky_ex_out", get_linalg_cholesky_ex_out_namedtuple()},
    {"linalg_eig", get_linalg_eig_namedtuple()},
    {"linalg_eig_out", get_linalg_eig_out_namedtuple()},
    {"linalg_eigh", get_linalg_eigh_namedtuple()},
    {"linalg_eigh_out", get_linalg_eigh_out_namedtuple()},
    {"linalg_inv_ex", get_linalg_inv_ex_namedtuple()},
    {"linalg_inv_ex_out", get_linalg_inv_ex_out_namedtuple()},
    {"linalg_lstsq", get_linalg_lstsq_namedtuple()},
    {"linalg_lstsq_out", get_linalg_lstsq_out_namedtuple()},
    {"linalg_qr", get_linalg_qr_namedtuple()},
    {"linalg_qr_out", get_linalg_qr_out_namedtuple()},
    {"linalg_slogdet", get_linalg_slogdet_namedtuple()},
    {"linalg_slogdet_out", get_linalg_slogdet_out_namedtuple()},
    {"linalg_svd_out", get_linalg_svd_out_namedtuple()},
    {"linalg_svd", get_linalg_svd_namedtuple()},
    {"lstsq_out", get_lstsq_out_namedtuple()},
    {"lstsq", get_lstsq_namedtuple()},
    {"lu_unpack", get_lu_unpack_namedtuple()},
    {"lu_unpack_out", get_lu_unpack_out_namedtuple()},
    {"max", get_max_namedtuple()},
    {"max_out", get_max_out_namedtuple()},
    {"median", get_median_namedtuple()},
    {"median_out", get_median_out_namedtuple()},
    {"min", get_min_namedtuple()},
    {"min_out", get_min_out_namedtuple()},
    {"mode", get_mode_namedtuple()},
    {"mode_out", get_mode_out_namedtuple()},
    {"nanmedian", get_nanmedian_namedtuple()},
    {"nanmedian_out", get_nanmedian_out_namedtuple()},
    {"qr_out", get_qr_out_namedtuple()},
    {"qr", get_qr_namedtuple()},
    {"slogdet", get_slogdet_namedtuple()},
    {"solve", get_solve_namedtuple()},
    {"solve_out", get_solve_out_namedtuple()},
    {"sort_out", get_sort_out_namedtuple()},
    {"sort", get_sort_namedtuple()},
    {"svd_out", get_svd_out_namedtuple()},
    {"svd", get_svd_namedtuple()},
    {"symeig_out", get_symeig_out_namedtuple()},
    {"symeig", get_symeig_namedtuple()},
    {"topk_out", get_topk_out_namedtuple()},
    {"topk", get_topk_namedtuple()},
    {"triangular_solve_out", get_triangular_solve_out_namedtuple()},
    {"triangular_solve", get_triangular_solve_namedtuple()},
  };
  return namedtuple_types_map;
}

PyTypeObject* get_namedtuple(std::string name) {
  static auto& namedtuple_types_map = get_namedtuple_types_map();
  return namedtuple_types_map[name];
}

void initReturnTypes(PyObject* module) {
  static struct PyModuleDef def = {
      PyModuleDef_HEAD_INIT, "torch._C._return_types", nullptr, -1, {}};
  PyObject* return_types_module = PyModule_Create(&def);
  if (!return_types_module) {
    throw python_error();
  }

  for (const auto& return_type_pair : get_namedtuple_types_map()) {
    // hold onto the TypeObject for the unlikely case of user
    // deleting or overriding it.
    Py_INCREF(return_type_pair.second);
    if (PyModule_AddObject(
            return_types_module,
            return_type_pair.first.c_str(),
            (PyObject*)return_type_pair.second) != 0) {
      Py_DECREF((PyObject*)return_type_pair.second);
      throw python_error();
    }
  }

  // steals a reference to return_types on success
  if (PyModule_AddObject(module, "_return_types", return_types_module) != 0) {
    Py_DECREF(return_types_module);
    throw python_error();
  }
}

} // namespace autograd
} // namespace torch

```

</details>

<details>

<summary>Eg. updated call in other python_*_functions</summary>

```cpp
// linalg_cholesky_ex
static PyObject * THPVariable_linalg_cholesky_ex(PyObject* self_, PyObject* args, PyObject* kwargs)
{
  HANDLE_TH_ERRORS
  static PyTypeObject* NamedTuple = get_namedtuple("linalg_cholesky_ex");
  static PyTypeObject* NamedTuple1 = get_namedtuple("linalg_cholesky_ex_out");
  static PythonArgParser parser({
    "linalg_cholesky_ex(Tensor input, *, bool upper=False, bool check_errors=False, TensorList[2] out=None)",
  }, /*traceable=*/true);

  ParsedArgs<4> parsed_args;
  auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
  if(_r.has_torch_function()) {
    return handle_torch_function(_r, nullptr, args, kwargs, THPLinalgVariableFunctionsModule, "torch.linalg");
  }
  if (_r.isNone(3)) {
    // aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)

    auto dispatch_linalg_cholesky_ex = [](const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex(self, upper, check_errors);
    };
    return wrap(NamedTuple, dispatch_linalg_cholesky_ex(_r.tensor(0), _r.toBool(1), _r.toBool(2)));
  } else {
    // aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
    auto out = _r.tensorlist_n<2>(3);
    auto dispatch_linalg_cholesky_ex_out = [](at::Tensor & L, at::Tensor & info, const at::Tensor & self, bool upper, bool check_errors) -> ::std::tuple<at::Tensor,at::Tensor> {
      pybind11::gil_scoped_release no_gil;
      return at::linalg_cholesky_ex_out(L, info, self, upper, check_errors);
    };
    return wrap(NamedTuple1, dispatch_linalg_cholesky_ex_out(out[0], out[1], _r.tensor(0), _r.toBool(1), _r.toBool(2)));
  }
  Py_RETURN_NONE;
  END_HANDLE_TH_ERRORS
}

```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66614

Reviewed By: H-Huang

Differential Revision: D32741134

Pulled By: zou3519

fbshipit-source-id: 27bada30d20e66333ca1be1775608d9f0cbf9f59
2021-12-06 09:05:29 -08:00
Xiao Wang
bfe5ad28e6 [Linalg] Add a runtime switch to let pytorch prefer a backend impl in linalg functions on GPU (#67980)
Summary:
Per title.

This PR introduces a global flag that lets pytorch prefer one of the many backend implementations while calling linear algebra functions on GPU.

Usage:
```python
torch.backends.cuda.preferred_linalg_library('cusolver')
```

Available options (str): `'default'`, `'cusolver'`, `'magma'`.

Issue https://github.com/pytorch/pytorch/issues/63992 inspired me to write this PR. No heuristic is perfect on all devices, library versions, matrix shapes, workloads, etc. We can obtain better performance if we can conveniently switch linear algebra backends at runtime.

Performance of linear algebra operators after this PR should be no worse than before. The flag is set to **`'default'`** by default, which makes everything the same as before this PR.

The implementation of this PR is basically following that of https://github.com/pytorch/pytorch/pull/67790.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67980

Reviewed By: mruberry

Differential Revision: D32849457

Pulled By: ngimel

fbshipit-source-id: 679fee7744a03af057995aef06316306073010a6
2021-12-03 19:06:30 -08:00
Michael Suo
0aa9d177fe [fx] remove CPatcher (#69032)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69032

I am removing it because, for packaging-related reasons, it's easier if
torch.fx is a pure Python module.

I don't think there is much reason to keep it: this functionality was
experimental, has no known users currently, and we didn't have a clear
path to turning it on by default due to regressions in tracing
performance. Also, it only was ever enabled for `rand` and friends.

Technically the removal of the `enable_cpatching` arguments on
`symbolic_trace` and `Tracer.__init__` are BC-breaking, but the
docstrings clearly state that the argument is experimental and BC is not
guaranteed, so I think it's fine.

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D32706344

Pulled By: suo

fbshipit-source-id: 501648b5c3610ae71829b5e7db74e3b8c9e1a480
2021-11-30 11:59:57 -08:00
Christian Puhrsch
75955e4ef8 [clone][sparse] Add torch._C._sparse namespace (#68672)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68672

This PR adds `python_module: sparse` to `native_function.yaml`.
These functions would appear in `torch._C._sparse` namespace instead of
just `torch`.

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D32517813

fbshipit-source-id: 7c3d6df57a24d7c7354d0fefe1b628dc89be9431
2021-11-19 19:47:38 -08:00
Joel Schlosser
9a2db6f091 Factor backend routing logic out of convolution forward (#67790)
Summary:
This PR introduces a new function `_select_conv_backend` that returns a `ConvBackend` enum representing the selected backend for a given set of convolution inputs and params.

The function and enum are exposed to python for testing purposes through `torch/csrc/Module.cpp` (please let me know if there's a better place to do this).

A new set of tests validates that the correct backend is selected for several sets of inputs + params. Some backends aren't tested yet:
* nnpack (for mobile)
* xnnpack (for mobile)
* winograd 3x3 (for mobile)

Some flowcharts for reference:
![conv_routing_graph md](https://user-images.githubusercontent.com/75754324/140828957-1135b400-38c0-4c9f-87ef-4f33ceebeeae.png)
![conv_nogroup_routing_graph md](https://user-images.githubusercontent.com/75754324/140828977-ed223a4e-aa86-49f1-9925-c0f6b9ab36af.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67790

Reviewed By: zou3519

Differential Revision: D32280878

Pulled By: jbschlosser

fbshipit-source-id: 0ce55174f470f65c9b5345b9980cf12251f3abbb
2021-11-10 07:53:55 -08:00
eqy
790763b0fe Add an option to disable reduced precision reductions for FP16 GEMM (#67946)
Summary:
https://github.com/pytorch/pytorch/issues/67578 disabled reduced precision reductions for FP16 GEMMs. After benchmarking, we've found that this has substantial performance impacts for common GEMM shapes (e.g., those found in popular instantiations of multiheaded-attention) on architectures such as Volta. As these performance regressions may come as a surprise to current users, this PR adds a toggle to disable reduced precision reductions
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = `
rather than making it the default behavior.

CC ngimel ptrblck
stas00 Note that the behavior after the previous PR can be replicated with
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67946

Reviewed By: zou3519

Differential Revision: D32289896

Pulled By: ngimel

fbshipit-source-id: a1ea2918b77e27a7d9b391e030417802a0174abe
2021-11-09 17:27:20 -08:00
Yukio Siraichi
8854817f44 Implement Python Array API asarray function. (#60627)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60627

In this PR, the core of `frombuffer` and `fromDLPack` onto _tensor_new.cpp_. `asarray`
uses such refactored functions for interpreting the object as a tensor. We follow the
Python Array API standard found:

https://data-apis.org/array-api/latest/API_specification/creation_functions.html?highlight=asarray

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D31640510

Pulled By: mruberry

fbshipit-source-id: d0869e0d73cb50023d5866b001dac5d34ca30dfd
2021-10-16 21:11:31 -07:00
Kurt Mohler
a25648953c Add warn_only kwarg to use_deterministic_algorithms (#66233)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/64883

Adds a `warn_only` kwarg to `use_deterministic_algorithms`. When enabled, calling an operation that does not have a deterministic implementation will raise a warning, rather than an error.

`torch.testing._internal.common_device_type.expectedAlertNondeterministic` is also refactored and documented in this PR to make it easier to use and understand.

cc mruberry kurtamohler

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66233

Reviewed By: bdhirsh

Differential Revision: D31616481

Pulled By: mruberry

fbshipit-source-id: 059634a82d54407492b1d8df08f059c758d0a420
2021-10-15 13:54:59 -07:00
Kurt Mohler
5883523c1d Remove dtype from torch.Storage and use only torch.ByteStorage (#62030)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030

Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible

Fixes https://github.com/pytorch/pytorch/issues/47442

* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls.  `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
 To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.

Original pull request: https://github.com/pytorch/pytorch/pull/59671

Reviewed By: soulitzer, ngimel

Differential Revision: D29466819

Pulled By: ezyang

fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
2021-10-05 13:50:34 -07:00
Pruthvi Madugundu
085e2f7bdd [ROCm] Changes not to rely on CUDA_VERSION or HIP_VERSION (#65610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65610

- Replace HIP_PLATFORM_HCC with USE_ROCM
- Dont rely on CUDA_VERSION or HIP_VERSION and use USE_ROCM and ROCM_VERSION.

- In the next PR
   - Will be removing the mapping from CUDA_VERSION to HIP_VERSION and CUDA to HIP in hipify.
   - HIP_PLATFORM_HCC is deprecated, so will add HIP_PLATFORM_AMD to support HIP host code compilation on gcc.

cc jeffdaily sunway513 jithunnair-amd ROCmSupport amathews-amd

Reviewed By: jbschlosser

Differential Revision: D30909053

Pulled By: ezyang

fbshipit-source-id: 224a966ebf1aaec79beccbbd686fdf3d49267e06
2021-09-29 09:55:43 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
cyy
a26a9f8b75 zero initialize some members and other fixes (#59915)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59915

Reviewed By: soulitzer

Differential Revision: D29106684

Pulled By: ezyang

fbshipit-source-id: 713cbdf10866017ee715ee89ec82acb592c769b6
2021-07-19 07:36:26 -07:00
Nikita Shulga
4036820506 Add PocketFFT support (#60976)
Summary:
Needed on platforms, that do not have MKL, such as aarch64 and M1
- Add `AT_POCKETFFT_ENABLED()` to Config.h.in
- Introduce torch._C.has_spectral that is true if PyTorch was compiled with either MKL or PocketFFT
- Modify spectral test to use skipCPUIfNoFFT instead of skipCPUIfNoMKL

Share implementation of `_out` functions as well as fft_fill_with_conjugate_symmetry_stub between MKL and PocketFFT implementations

Fixes https://github.com/pytorch/pytorch/issues/41592

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60976

Reviewed By: walterddr, driazati, janeyx99, samestep

Differential Revision: D29466530

Pulled By: malfet

fbshipit-source-id: ac5edb3d40e7c413267825f92a5e8bc4bb249caf
2021-06-30 16:28:20 -07:00
Victor Bittorf
8b6487c650 Add CUDA Vital (#58059)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58059

Add CUDA.used vital sign which is true only if CUDA was "used" which technically means the context was created.

Also adds the following features:
- Force vitals to be written even if vitals are disabled, to enable testing when the env variable is not set from the start of execution
- Add a read_vitals call for python to read existing vital signs.

Test Plan: buck test mode/dbg caffe2/test:torch -- --regex basic_vitals

Reviewed By: xuzhao9

Differential Revision: D28357615

fbshipit-source-id: 681bf9ef63cb1458df9f1c241d301a3ddf1e5252
2021-06-25 16:31:11 -07:00
Nikita Shulga
36a5647e30 Handle exceptions from THPModule_setQEngine (#60073)
Summary:
Prevents Python runtime crashes when `torch._C._set_qengine(2**65)` or `torch.backends.quantized.engine="fbgemm"` if PyTorch was compiled without fbgemm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60073

Reviewed By: supriyar

Differential Revision: D29156430

Pulled By: malfet

fbshipit-source-id: 95b97352a52a262f1634b72da64a0c950eaf2373
2021-06-16 00:40:59 -07:00
Richard Barnes
e3d75b8475 irange for PyTorch sans jit (#59481)
Summary:
Switches most of the simple for loops outside of `jit` directories to use `c10::irange`.

Generated with D28874212.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59481

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D28909681

fbshipit-source-id: ec9ab1bd602933238d9d0f73d4d8d027b75d9d85
2021-06-09 14:46:11 -07:00
driazati
059a717c9e Fix breakpad build and add to more images (#59236)
Summary:
This PR
* adds the breakpad build to most of the remaining docker images (except the mobile + slim ones)
* pins to a [fork of breakpad](https://github.com/google/breakpad/compare/master...driazati:master?expand=1) to enable dasiy chaining on signal handlers
* renames the API to be nicer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59236

Reviewed By: malfet

Differential Revision: D28792511

Pulled By: driazati

fbshipit-source-id: 83723e74b7f0a00e1695210ac2620a0c91ab4bf2
2021-06-01 22:47:14 -07:00
Elton Leander Pinto
029bec4505 [lint] Fix uninitialized variable lint error in Module.cpp (#58499)
Summary:
This PR fixes two uninitialized variable lint warnings in `Module.cpp` by initializing them to `nullptr`s.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58499

Reviewed By: driazati, samestep

Differential Revision: D28519192

Pulled By: 1ntEgr8

fbshipit-source-id: 293cd4b296eea70b72adf02cd73f354063b124c6
2021-05-19 07:55:24 -07:00