Commit Graph

599 Commits

Author SHA1 Message Date
Yidi Wu
0a0a73a9a9 [cond] don't trace fw and bw graph in autograd key (#148930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148930
Approved by: https://github.com/zou3519
2025-03-24 17:07:29 +00:00
Tugsbayasgalan Manlaibaatar
021b3e23ec Fix is_nonzero for more than one elem tensors (#149637)
Differential Revision: [D71560442](https://our.internmc.facebook.com/intern/diff/D71560442)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149637
Approved by: https://github.com/pianpwk
2025-03-22 02:08:28 +00:00
angelayi
ff020d32b6 [export] Patch dynamo configs when nonstrict tracing (#149295)
Differential Revision: [D71298929](https://our.internmc.facebook.com/intern/diff/D71298929)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149295
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2025-03-21 21:44:54 +00:00
Avik Chaudhuri
fb07fe6f36 pretty print graph signature (#149710)
Fixes #141243

Differential Revision: [D71604218](https://our.internmc.facebook.com/intern/diff/D71604218/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149710
Approved by: https://github.com/angelayi
2025-03-21 21:31:58 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
c5deacc27a Fix subclass access custom op bug (#149698)
Summary: When we call torch.inference_mode, we seem to skip Autograd key causing the custom op export uses to be not decomposed properly before subclass dispatching starts. We fix this by force desugaring this op at Python key

Test Plan: test

Differential Revision: D71599541

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149698
Approved by: https://github.com/bdhirsh
2025-03-21 19:42:56 +00:00
Avik Chaudhuri
09aa63ea2c preserve custom meta in placeholders (#149661)
Fixes #147338

Differential Revision: [D71573533](https://our.internmc.facebook.com/intern/diff/D71573533/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149661
Approved by: https://github.com/junpeiz, https://github.com/angelayi
2025-03-21 19:09:38 +00:00
Zhengxu Chen
f47aa08130 [export] Support python assertion with symints. (#149444)
Summary: This diff ports some technique from torch.fx symbolic trace to trace through Python asserts when we run into data dependent symbolic shape assertions, so that we can achieve the same effect as torch dynamo to automatically turn assert into torch.check()s.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_python_asserts_with_sym_int
Differential Revision: D71425360

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149444
Approved by: https://github.com/tugsbayasgalan
2025-03-20 23:07:45 +00:00
Avik Chaudhuri
6237495fcf torch.Size input (#149414)
Summary: Support for `torch.Size` inputs was patchy before because `unflatten_fn` for this type returned a tuple. This PR cleans this up.

Fixes #149158

Test Plan: added test

Differential Revision: D71403635

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149414
Approved by: https://github.com/yushangdi
2025-03-20 16:23:13 +00:00
Tugsbayasgalan Manlaibaatar
3b7bd6c63d Fix dynamic shapes repordering bug (#149528)
WHen we create constraints, we look at the ordering of kwargs according to model signature. But when we trace, we use the ordering that is created based on how user passes in their kwargs. As a result, constraints and dynamic shapes end up having a different order causing issues when they have different dynamic tensor specs.

Differential Revision: [D71478578](https://our.internmc.facebook.com/intern/diff/D71478578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149528
Approved by: https://github.com/ydwu4
2025-03-20 01:57:44 +00:00
Avik Chaudhuri
5005e1bc47 support multinomial for dynamic num_samples (#149463)
Test Plan: added test

Fixes #149048

Differential Revision: D71434914

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149463
Approved by: https://github.com/pianpwk
2025-03-19 23:15:29 +00:00
Yanan Cao (PyTorch)
fae79e91a0 Remove torch.export.export_for_inference (#149078)
Summary: Remove torch.export.export_for_inference, it is redundant and can always be replaced with torch.export.export_for_training() + run_decompositions()

Test Plan: unit tests

Differential Revision: D71069057

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149078
Approved by: https://github.com/tugsbayasgalan
2025-03-19 19:57:18 +00:00
Avik Chaudhuri
20874a1f46 debug ival swap (#149206)
Summary:
Recall that we use "ivals" to track intermediate values of mutations during unflattening. Previously, for each such intermediate value, we would create a hidden shared attribute that would be updated / read by respective submodules.

Unfortunately this scheme doesn't work when some but not all of those submodules are swapped out. This is because the swapped in submodules have no knowledge of these hidden attributes. Thus the submodules that are not swapped out end up reading / updating dangling state.

This PR does away with these hidden attributes. Instead, we directly read the underlying buffer or placeholder that was updated, and update those underlying buffers and placeholders in place. This makes the graphs look much closer to their eager origins.

Test Plan: added some tests, ensured existing tests pass

Differential Revision: D71203469

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149206
Approved by: https://github.com/tugsbayasgalan
2025-03-19 03:43:30 +00:00
Tugsbayasgalan Manlaibaatar
6b1b95ad2a Support subclass constructor capturing in export (#147014)
Notable TODOs:
1. Need to implement AutogradHOP to get rid of subclasses before serializing
2. Need to implement mechanism to figure out what subclasses will be used in export when they are not expressed in the inputs

Differential Revision: [D69640673](https://our.internmc.facebook.com/intern/diff/D69640673)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147014
Approved by: https://github.com/bdhirsh
2025-03-16 18:19:19 +00:00
Yanan Cao (PyTorch)
ab45aaca97 Set non-strict export as default mode (#148790)
Summary:
- Flip the default value of strict argument in torch.export.export from True to False
- Update test infra to cope with the change, some of them made the assumption of strict mode as default
- Disabled some tests that fail in non-strict mode

Test Plan: Sandcastle

Differential Revision: D70228628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148790
Approved by: https://github.com/angelayi
2025-03-12 21:10:58 +00:00
Pian Pawakapan
a6459afb0e [dynamic shapes] add backed_size_oblivious option (#148696)
Adds option `torch.fx.experimental._config.backed_size_oblivious = True` to allocate `[0, inf]` instead of `[2, inf]` ranges for size backed symbols, and opting into size-oblivious semantics for them.

Helps in a number of cases like
- Keeps `[0, inf]` bounds for unbacked symbols, when we make a unbacked -> backed replacement
- More sound handling for 0/1 inputs at runtime when we lower from export
- Avoids ends-of-bounds, sys.maxsize constraint violations for exporting with named Dims (https://github.com/pytorch/pytorch/issues/146315, https://github.com/pytorch/pytorch/issues/146046)

May look towards turning this on globally for export.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148696
Approved by: https://github.com/bobrenjc93
2025-03-11 21:52:34 +00:00
Avik Chaudhuri
6cf360be04 fix lost input mutations with export_tracepoint (#148709)
Preserving module call signatures in the presence of input mutation cause incorrect results. The root cause turned out to be that export tracepoints would unwrap / wrap functional args that would lose mutation info on those args.

Differential Revision: [D70734821](https://our.internmc.facebook.com/intern/diff/D70734821/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148709
Approved by: https://github.com/angelayi
2025-03-07 09:36:18 +00:00
Ryan Guo
ad9a10aff0 [dynamo] Make nonstrict_trace work with some pytree.register_constant-ed instances (#148007)
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
2025-03-05 21:28:26 +00:00
angelayi
ed9624ee60 [export] Fix AttrProxy slicing (#148507)
Fixes https://fb.workplace.com/groups/1028545332188949/permalink/1159599265750221/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148507
Approved by: https://github.com/zhxchen17
2025-03-05 21:03:15 +00:00
Pian Pawakapan
c677f3251f [export] don't use unbacked_renamings in export (#147574)
Plan: avoid the use of unbacked renamings, and introduce a pass run in `_produce_aten_artifact` that recomputes unbacked bindings. Decided to do this because in we don't serialize unbacked renamings (or any ShapeEnv state), so this used to compose poorly with de/serialization. This hopefully establishes the invariant that the unbacked binding keys are always in sync with the example values (i.e. same indices, and removed if the symbol is replaced / specialized).

For de/serialization, we don't stored unbacked bindings, and just rerun the pass.

Involved a refactor of compute_unbacked_bindings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147574
Approved by: https://github.com/avikchaudhuri
2025-03-04 21:43:49 +00:00
Alexander Grund
302c660298 Consistently use load_torchbind_test_lib in tests (#148082)
The same code is repeated multiple times with slightly different implementations.
Use the existing function for brevity and consistency.

In the function the code from `test_export` is used which does a single `load_library` with cleaner conditions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148082
Approved by: https://github.com/angelayi
2025-03-03 19:37:28 +00:00
Tugsbayasgalan Manlaibaatar
a821d69d92 Fix register constant to be usable in exportz (#147533)
Differential Revision: [D69939737](https://our.internmc.facebook.com/intern/diff/D69939737)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147533
Approved by: https://github.com/zou3519
2025-02-25 21:10:47 +00:00
Avik Chaudhuri
8d921eb97f export method (#147573)
The `export` API takes a `nn.Module` and traces its `forward` method. However sometimes it is useful to export different methods of a `nn.Module`, either as a one-off for debugging or as a set of methods that are called in some sequence outside `export` (e.g., `encode` / `decode`). When multiple methods of the same module instance are exported, they should share the same of the common module instance.

This PR adds a couple of utils in `torch._export.utils` for this workflow.

The `wrap_method` util wraps a method as a `nn.Module` that can then be exported. See included test. We recommend using the same module instance to export multiple methods on that instance, in which case they are guaranteed to share  state. On serde, this state sharing is lost, so we provide another util, `sync_state`, to re-sync the state.

These utils are meant to be eventually replaced by API-level changes, but for now this can unblock users who need this workflow. In particular, in the future we can accept one or multiple method entrypoints, with their own args / kwargs / dynamic shape specifications, which can create a variant of `ExportedProgram` with multiple graphs that share state; then we can automatically ensure that the state sharing is preserved through serde.

Differential Revision: [D69960801](https://our.internmc.facebook.com/intern/diff/D69960801/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147573
Approved by: https://github.com/tugsbayasgalan
2025-02-25 20:58:54 +00:00
Avik Chaudhuri
698f6f9fae specify only some dimensions in shapes collection (#147534)
Differential Revision: [D69936316](https://our.internmc.facebook.com/intern/diff/D69936316/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147534
Approved by: https://github.com/bobrenjc93
2025-02-21 22:02:42 +00:00
Thomas Bohnstingl
6eb795c9e8 [associative_scan] compile backend change to "eager" (#146973)
This PR fixes some issues with torch export discussed here: https://github.com/pytorch/pytorch/pull/140043#discussion_r1941932960

However, this backend change does still not resolve the failure for specific shapes mentioned here: https://github.com/pytorch/pytorch/issues/137943#issuecomment-2649564994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146973
Approved by: https://github.com/ydwu4
2025-02-21 20:21:41 +00:00
Zhengxu Chen
fdb1305ace reland "[sigmoid] Test OSS model runner with test_export.py" (#147535)
Summary: There are ~260 tests for all the corner cases of export from test_export.py. utitlizing to test sigmoid in the OSS setting.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r _sigmoid

Differential Revision: D69937387

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147535
Approved by: https://github.com/yiming0416
2025-02-20 23:45:13 +00:00
Yidi Wu
77aa602871 [torchbind] Differentiate ScriptModule and ScriptObject with qualified name (#147399)
Summary:
This pr add a _is_script_object method to differentiate scriptModule and scriptObject, where the formal inherits from ScriptObject in C++ so they both passes the isinstance(obj, torch.ScriptObject) check.

The qualified name of ScriptObject (i.e. custom class) would starts with "__torch__.torch.classes", this has been a widely used assumption for dealing with custom class across our code base.

Test Plan: Add new test.

Differential Revision: D69685316

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147399
Approved by: https://github.com/yushangdi
2025-02-20 04:57:57 +00:00
Gregory Comer
f63db6255f Re-land exclude upsample_bilinear2d.vec and nearest2d.vec from default export decomposition table (#147153)
Note: This is a re-land of https://github.com/pytorch/pytorch/pull/141791, which I reverted due to breaking some Meta-internal tests - an internal ET delegate did not handle the non-decomposed upsample_nearest2d, and it was not caught in CI. I've resolved that issue and should be ready to safely re-land.

Summary:
As upsample_bilinear2d.vec and upsample_nearest2d.vec are core ATen ops, they should not be decomposed by default in the export path. Because the operators have CompositeImplicitAutograd dispatch, their decomposition is registered by default. This change adds an override list for CIA decompositions being registered in the default decomp table.

In the long-term, we likely will want to exclude decompositions for all core-tagged CIA ops, but this will require all consumers to be ready to handle the remaining two ops, avg_pool1d, and adaptive_avg_pool1d. Until they are ready, I believe an explicit override list is the safest option.

Additionally, I've also removed the ExecuTorch XNNPACK delegate ConvertToUpsampleBilinear2d pass, as the pass breaks (and is not needed), given that the op is not decomposed. The purpose of this pass was originally to pattern match the decomposition and recompose it, but this is no longer necessary.

Test Plan:
Added a new test (`test_default_decomposition_core_cia_ops`) in test_export.py to verify that upsample_bilinear2d.vec (and in the future, other core-tagged CIA ops) are not decomposed by default. Also, I manually validated end to end with ExecuTorch that the op is not decomposed in to_edge (see N6238522).

```
buck test //caffe2/test:test_export -- test_default_decomposition_core_cia_ops
```

Differential Revision: D69625112

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147153
Approved by: https://github.com/manuelcandales
2025-02-19 23:03:29 +00:00
Avik Chaudhuri
24738768a8 more dist ops in non strict (#147417)
Summary: Previously we added support for `all_reduce` to non strict. This PR extends this support to other non-functional collectives that are remapped in Dynamo: `all_gather`, `all_gather_into_tensor`, `all_to_all_single`, `reduce_scatter_tensor`.

Test Plan: added unit tests

Differential Revision: D69813991

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147417
Approved by: https://github.com/angelayi
2025-02-19 21:29:16 +00:00
Avik Chaudhuri
4ab967c44d all reduce non strict (#147133)
Summary:
Some distributed collectives like `all_reduce` have special handling in Dynamo, where they are mapped to functional collectives. Non-strict was previously blind to such mappings, which means using them would fail to trace. Here we show how intercepting them in non-strict's torch function mode can mimic this remapping logic. More ops to follow.

Side note: a recently added distributed test was in the wrong place, making the expected failures for non-strict not fire because we weren't actually generating those tests to begin with! Now fixed.

Test Plan: moved and updated test

Differential Revision: D69607140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147133
Approved by: https://github.com/tugsbayasgalan
2025-02-15 19:37:08 +00:00
angelayi
ea188ac0c7 [export] Add meta for aten.bincount (#147129)
Fixes https://github.com/pytorch/pytorch/issues/147094
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147129
Approved by: https://github.com/pianpwk
2025-02-14 10:33:54 +00:00
xinan.lin
972e927134 [Break XPU][Inductor UT] Fix XPU Inductor UT failures introduced from community. (#146762)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146762
Approved by: https://github.com/EikanWang, https://github.com/desertfire, https://github.com/jansel
2025-02-14 01:38:50 +00:00
Thomas Bohnstingl
3a29992ee6 [associative_scan] Lifted arguments (#140043)
This PR implements lifted arguments for associative_scan

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140043
Approved by: https://github.com/ydwu4
2025-02-11 23:25:55 +00:00
Tugsbayasgalan Manlaibaatar
ebd992724f Implement serializable getattr support for tensor subclasses (#145772)
builtins.getattr is not serializable, so we replace it with a custom op that has more refined schema.

Differential Revision: [D68899421](https://our.internmc.facebook.com/intern/diff/D68899421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145772
Approved by: https://github.com/bdhirsh
2025-02-11 19:05:14 +00:00
PyTorch MergeBot
fe94ece375 Revert "Exclude upsample_bilinear2d.vec from default core ATen decomposition table (#141791)"
This reverts commit 3d604b17d9.

Reverted https://github.com/pytorch/pytorch/pull/141791 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/141791#issuecomment-2649717140))
2025-02-11 03:17:59 +00:00
PyTorch MergeBot
f38f1dcd82 Revert "move and fix logic to update unbacked bindings (#146115)"
This reverts commit 103c8b44bc.

Reverted https://github.com/pytorch/pytorch/pull/146115 on behalf of https://github.com/huydhn due to This change has been reverted internally D69129334 but the OSS revert failed https://github.com/pytorch/pytorch/pull/146437 ([comment](https://github.com/pytorch/pytorch/pull/146115#issuecomment-2649610877))
2025-02-11 01:26:36 +00:00
Gregory Comer
3d604b17d9 Exclude upsample_bilinear2d.vec from default core ATen decomposition table (#141791)
As upsample_bilinear2d.vec is a core ATen op, it should not be decomposed by default in the export path. Because the operator has CompositeImplicitAutograd dispatch, its decomposition is registered by default. This change adds an override list for CIA decompositions being registered in the default decomp table.
In the long-term, we likely will want to exclude decompositions for all core-tagged CIA ops, but this will require all consumers to be ready to handle the remaining three ops: upsample_nearest2d.vec, avg_pool1d, and adaptive_avg_pool1d. Until they are ready, I believe an explicit override list is the safest option.

Additionally, I've also removed the ExecuTorch XNNPACK delegate ConvertToUpsampleBilinear2d pass, as the pass breaks (and is not needed), given that the op is not decomposed. The purpose of this pass was originally to pattern match the decomposition and un-decomposite it, but this is no longer necessary.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141791
Approved by: https://github.com/tugsbayasgalan, https://github.com/digantdesai
2025-02-10 19:30:19 +00:00
Avik Chaudhuri
103c8b44bc move and fix logic to update unbacked bindings (#146115)
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).

This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.

Test Plan: added test

 D68880766

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
2025-02-07 22:41:19 +00:00
Tugsbayasgalan Manlaibaatar
d2a2b9f8a7 Fix constants with non-functional operators (#145593)
Previously, in non-strict path, we always error when trying to inplace update a constant tensor because those constant tensors are not actually wrapped by functional tensors. This is correct behaviour in torch.compile, because dynamo makes all constant tensors into buffers and AOTDispatcher just lifts them and wraps them in functional tensors. However, in non-strict, there is no such step that registers constants as buffers so AOTDispatcher panics when it sees these dangling constant tensors when functioanalizing.

Due to recent change in the IR, this is no longer an issue in non-strict path because we don't call AOTDispatcher at training IR level, but now it is a problem for both strict and non-strict when we lower to inference. (lowering to inference is very similar to non-strict tracing) As a result, we have at least one external (https://github.com/pytorch/pytorch/issues/141336) and internal issues reported due to this difference.

To fix this, there are two ways:
1. Make functionalization be aware of constant tensors and map them to functional tensors on the fly. This makes functionalization invariant uglier and could potentially open up a gate for more nasty bugs.
2. Special handle this in export. This seems more aligned with what dynamo does today so i think we should do it this way. I think the current state could benefit from more refactors to make the run_deocmpositions to be more similar to strict export (because both of them now handle this constant registerinig logic) but it is bit complicated to do it now because strict export version of this logic is also not complete because it doesn't take into account of export graph renaming pass etc). I will follow up with more refactors after this PR (T213466691) to unblock users faster.

For future reference:

Why are we not doing "turning constants into non-persistent buffers and never de-register"? The reason is because in some internal models, they rely on module.to to reliably work to move params/buffers to correct device. As a result, buffers are moved while constants are not. In composibility meeting, we agreed that export won't do device agnostic tracing going forward (it will provide a way to specify FakeTensor in CPU that can be configured to be run on GPU), so after that is done, we can always turn constants into non-persistent buffers which will simplify export's constant handling.

Differential Revision: [D68610739](https://our.internmc.facebook.com/intern/diff/D68610739)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145593
Approved by: https://github.com/avikchaudhuri
2025-02-05 17:44:19 +00:00
PyTorch MergeBot
f242da41c7 Revert "move and fix logic to update unbacked bindings (#146115)"
This reverts commit 0144613e6f.

Reverted https://github.com/pytorch/pytorch/pull/146115 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/146115#issuecomment-2635695958))
2025-02-05 04:51:39 +00:00
Angela Yi
8444fe019a [export] Fix requires_grad deserialization (#146351)
Test Plan: CI

Differential Revision: D69072095

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146351
Approved by: https://github.com/zhxchen17
2025-02-04 08:02:38 +00:00
Tugsbayasgalan Manlaibaatar
041e08f9dc Add buffers to parameterizaiton rule (#145991)
Differential Revision: [D68959513](https://our.internmc.facebook.com/intern/diff/D68959513)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145991
Approved by: https://github.com/bdhirsh
2025-02-03 16:49:03 +00:00
cyy
6ac8bc0cd2 Remove unused import in tests (#146266)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146266
Approved by: https://github.com/Skylion007
2025-02-03 03:40:18 +00:00
Avik Chaudhuri
0144613e6f move and fix logic to update unbacked bindings (#146115)
Summary:
Previously we were touching up unbacked bindings between Dynamo and AOTAutograd in strict export, but the logic had a bug: if an unbacked symint gets substituted by a backed symint, we would put the backed symint in the unbacked bindings (the check `is_symbol` was not enough here).

This PR fixes this logic, and moreover, moves it into the serializer instead, because we don't need this adjustment outside serde.

Test Plan: added test

Differential Revision: D68880766

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146115
Approved by: https://github.com/pianpwk
2025-02-02 10:43:55 +00:00
Shangdi Yu
f40e013787 Fix aten.to when input is a tensor constant (#146220)
Summary:
Fix aten.to when input is a tensor constant.

In this case, `args_unwrapped` could just be a constant, so not a functional tensor.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export  -- -r  tensor_constant_aten_to
```

Differential Revision: D68984244

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146220
Approved by: https://github.com/JacobSzwejbka
2025-02-01 11:07:33 +00:00
angelayi
27e35de6c2 [export] Add distributed test (#146050)
Reland https://github.com/pytorch/pytorch/pull/145886
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146050
Approved by: https://github.com/avikchaudhuri
2025-01-31 02:56:42 +00:00
Pian Pawakapan
ffb424eab6 [dynamo/export] call local_scalar_dense when full() value is scalar tensor (#144999)
Fixes https://github.com/pytorch/pytorch/issues/144907
```
        class Foo(torch.nn.Module):
            def forward(self, val):
                return torch.full((80, 2), val, dtype=torch.float32)

        export(Foo(), args=(torch.tensor(1),))
```

When we have a `torch.full` call like above, where the fill value is a scalar Tensor and not a scalar value, the FX graph from `_dynamo.export()` contains a single node: the full op. We run into a `PendingUnbackedSymbolNotFound` error, because the `item()` call is implicit; the UnbackedSymInt is extracted but goes directly into the data of the output tensor value, and we're then unable to locate it when we try to compute unbacked bindings.

On the other hand, non-strict export doesn't face this, because an explicit `item()`, or `local_scalar_dense` node is inserted, and the unbacked binding is directly the example value of that node.

This adds a dynamo handler to imitate what happens in non-strict.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144999
Approved by: https://github.com/angelayi
2025-01-31 02:45:43 +00:00
Colin Peppler
e6704a2447 Allow replacing unbacked with very large upperbound by returning no-op for FloorToInt(int) (#146001)
* Let's say x is an integer beyond 2^53 where Python floats lose precision i.e. can't increment by 1.
* Therefore, float(x) will lose precision and won't retain the exact value of x even though it's an integer.
* That means `FloorToInt(very_large_number)` will lose precision if we cast it to float
```
>>> int(float(1000000007999999992))
1000000008000000000
```

This means when we try to do this in set_replacement():
32bb6f83d5/torch/fx/experimental/symbolic_shapes.py (L6011-L6019)

We run into this:
```
TORCH_LOGS="+torch.fx.experimental.symbolic_shapes" pytest -s test_export.py -k test_replace_unbacked_with_very_large_upperbound

  File "/data/users/colinpeppler/pytorch/torch/fx/experimental/symbolic_shapes.py", line 6258, in _maybe_guard_rel
    self._set_replacement(rhs, self._find(lhs), "trivial_rhs")
  File "/data/users/colinpeppler/pytorch/torch/fx/experimental/symbolic_shapes.py", line 6039, in _set_replacement
    assert tgt_bound.issubset(
torch._dynamo.exc.TorchRuntimeError: Failed running call_function <built-in function add>(*(FakeTensor(..., size=(2*s0,)), FakeTensor(..., size=(u0,))), **{}):
tgt_bound=VR[4, 1000000008000000000] not a subset of src_bound=VR[4, 1000000007999999992]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146001
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #145898
2025-01-31 00:25:20 +00:00
Avik Chaudhuri
8117656162 nonzero_static with symint size (#146006)
Summary: Previously `nonzero_static` would force specialization on the `size` argument. This PR enables it to be used with a dynamic `size` argument.

Test Plan: added test

Differential Revision: D68874784

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146006
Approved by: https://github.com/angelayi
2025-01-30 23:42:42 +00:00
Yidi Wu
d1143c4b37 [export] fix non-strict pre_dispatch exporting while_loop (#145762)
fix https://github.com/pytorch/pytorch/issues/145737.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145762
Approved by: https://github.com/tugsbayasgalan, https://github.com/zou3519, https://github.com/avikchaudhuri
2025-01-30 18:58:34 +00:00
Colin Peppler
50f834f134 [export] allow bit shift builtin ops (#145802)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145802
Approved by: https://github.com/pianpwk
2025-01-29 03:05:48 +00:00