Summary: To make sure schema.py and schema.thrift are kept in sync, we use the int keys from thrift and use Python Annotated type to associate fields between thrift and schema.py. Later we will use this association to build a single source of truth between the schemas.
Test Plan: CI
Differential Revision: D66253157
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141611
Approved by: https://github.com/yiming0416
Summary: The struct type is named "InputToConsantInputSpec" in thrift which causes some inconsistency between the schema. Changing the type name from 1 to another is okayish because that doesn't change the on wire format.
Test Plan: CI
Differential Revision: D66240951
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141151
Approved by: https://github.com/yiming0416
Summary: The way we've been de/serializing sympy.Exprs is not roundtrippable in all cases (serialize by calling `str(expr)`, and deserialize by calling `sympy.sympify(expr_str)`). This has led to expressions being mathematically equivalent but structurally different, causing issues in ValueRanges. Example issue: https://github.com/pytorch/pytorch/issues/136797
This starts to deprecate the use of `expr_str` and stores expressions in AST format instead. For BC purposes, `expr_str` deserialization is still supported, but we will always serialize to `expr_ast`. We'll kill this once the serialization upgrader design is finalized and implemented.
Test Plan: test_export
Differential Revision: D65638757
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140084
Approved by: https://github.com/angelayi
Summary:
had a land racing with another diff D65166035 to fix the schema.
According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//apf/rec/ir/tests:ir_export_deserialize_test
Differential Revision: D65273170
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139394
Approved by: https://github.com/yiming0416
Summary:
This diff reverts D65167805
broke the release pipeline
Test Plan: NA
Differential Revision: D65245198
@diff-train-skip-merge (to silent facebook-github-bot until I have a stamp to land this)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139371
Approved by: https://github.com/malfet
Summary: According to export team's discussion, we are upgrading min_val and max_val to optional fields which shouldn't break BC and allows the schema to express infinity.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_serialize_infinite_sym_int
Differential Revision: D65167805
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139223
Approved by: https://github.com/yiming0416
Summary: In general I think it will be useful to also record the global torch version in the EP, so that we can track them in the logging in addition to the schema version.
Test Plan: CI
Reviewed By: henryoier
Differential Revision: D62252626
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135243
Approved by: https://github.com/yushangdi
Summary:
Add a special field in Graph and Node level metadata called "custom" which should be mapped to a json-serializable object, and we guarantee this field should be always preversed across the following transformations:
1. copy/deepcopy
2. run_decompositions()
3. serialization
4. re-exporting
Test Plan: :test_export -- -r custom_tag
Reviewed By: angelayi
Differential Revision: D60291839
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131912
Approved by: https://github.com/angelayi
Summary: This diff updates the ExportedProgram class in PyTorch to allow for multiple verifiers to be attached to it. This is done by adding a new field to the ExportedProgram schema called "verifiers" which is a list of strings representing the names of the verifiers to be attached to the program. The verifiers are loaded using the "load_verifier" function which is defined in the "torch._export.serde.serialize" module. The "exported_program.dialect" field is also deprecated in favor of the "verifiers" field.
Test Plan: CI
Differential Revision: D59408546
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130364
Approved by: https://github.com/angelayi, https://github.com/ydwu4
Summary:
note: breaking the original diff D55225818 into 3 parts (top-level renaming, higher-order-op subgraphs, constant input de/serialization) because of its size.
Stacked PR to restore original names to placeholder nodes, replacing the default names arg0_1, arg1_1, ...
This PR supports constant argument placeholder (e.g. forward(self, x, y=1)) names and de/serialization, by adding a name field for ConstantArguments in the graph signature, and ConstantInputSpec in the input specs for serialization.
Test Plan: verification checks on placeholder names for all export() calls, unit test in test/export/test_export.py
Differential Revision: D55506949
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123590
Approved by: https://github.com/angelayi, https://github.com/zhxchen17
Summary:
- we want fx nodes' stack trace format to be backward compatible and same as before in the program we export
- however in the serialized format, we would want to show a more compact stack_trace format, otherwise the nodes attributes are dominated by stack traces
- the diff implements the minimal in serialization process to dedupe node stack traces by resorting to a fileinfo_list and a filename_to_abbrev map, so we can use index to represent filenames, use lineno to represent lines.
Test Plan:
# llm
base on D54497918
```
buck2 run @//mode/dev-nosan fbcode//executorch/examples/models/llama2:export_llama -- -c ~/stories110M.pt -p ~/params.json
```
set up breakpoint after serialization/deserialization
- serialize
```
(Pdb) v_meta = [n.meta for n in exported_program.graph_module.graph.nodes]
(Pdb) paste_client.create_phabricator_paste_object(paste_creation_client_id=1093956601162697, content=str(v_meta)).number
1193647450
(Pdb) json_program = json.dumps(_dataclass_to_dict(serialized_graph.co_fileinfo_ordered_list),cls=EnumEncoder)
(Pdb) json_bytes = json_program.encode('utf-8')
(Pdb) paste_client.create_phabricator_paste_object(paste_creation_client_id=1093956601162697, content=str(json_bytes)).number
1193604333
(Pdb) sys.getsizeof(json_bytes)
3846
(Pdb) compressed_bytes = zstd.ZstdCompressor().compress(json_bytes)
(Pdb) sys.getsizeof(compressed_bytes)
1139
```
in P1193647450 (before serialization), search for `stack_trace`
in P1193604333 (after serialization), search for `stack_trace` and `co_fileinfo_ordered_list`
[note: didn't do compression in this diff since the size is pretty small and it adds complexity if we do compression]
- deserialize
```
(Pdb) v_meta = [n.meta for n in deserialized_exported_program.graph_module.graph.nodes]
(Pdb) paste_client.create_phabricator_paste_object(paste_creation_client_id=1093956601162697, content=str(v_meta)).number
1193629435
```
in P1193629435, search for `stack_trace`
# ads
Differential Revision: D54654443
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121675
Approved by: https://github.com/angelayi
- Added support for serializig the auto_functionalization op, which
required adding the functions `serialize_arbitrary_inputs` and
`serialize_arbitrary_outputs` which will serialize the inputs/outputs
without needing a schema, since HOOs do not have a schema.
- Added support for serializing user input mutations
- Added support for serializing operator inputs. They just get turned
into strings.
Differential Revision: [D53331039](https://our.internmc.facebook.com/intern/diff/D53331039)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118810
Approved by: https://github.com/suo
Summary:
X-link: https://github.com/pytorch/executorch/pull/1817
Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.
One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.
This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.
As a side effect, this diff tightened up quite a few sloppy behaviors around state dict handling:
- Tensor attributes were getting promoted to be buffers—bad!
- Tracing through a module not in the children of the root module would add its parameters/buffers to the state dict—bad!
This behavior is unlikely to show up in user code since the model would be totally broken, but did show up in a bunch of tests.
#buildmore
Test Plan:
unit tests
sandcastle
Differential Revision: D53340041
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118969
Approved by: https://github.com/guangy10, https://github.com/huydhn, https://github.com/titaiwangms
Summary:
X-link: https://github.com/pytorch/executorch/pull/1769
Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.
One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.
This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.
Test Plan: added a unit test
Differential Revision: D53253905
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118722
Approved by: https://github.com/SherlockNoMad, https://github.com/angelayi
Summary:
Class FQN is needed when unpacking CustomObj instance.
For all other Arguments, e.g. Tensor, TensorList, SymInt, we always know their exact type. However, CustomObjArgument had an opaque type.
Adding this field also helps unveiling the type of this opaque object.
Test Plan: CI
Differential Revision: D53029847
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118158
Approved by: https://github.com/zhxchen17
Summary:
Making union types harder to use wrong:
1. Initialize unset fields still with None, but we don't assert on the uniqueness of not None field, since it's possible to set a real field to None.
2. Raise error on unset fields in union, reducing the error surface and enforcing type safety.
3. Serialize union type with only tag and omit all the unset fields, this makes the serialized model more readable and debuggable.
Test Plan:
buck test mode/opt caffe2/test:test_export
buck test mode/opt executorch/exir/...
buck test mode/opt mode/inplace aps_models/ads/icvr/tests:export_test
Differential Revision: D52446586
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116511
Approved by: https://github.com/angelayi
Summary:
Move the serialized CustomClassHolder objects to the toplevel SerializedArtifact instead of embedding the bytes in the graph.
Currently the CustomClassHolder objects are embedded in the graph instead of being lifted to the ExportedProgram, so there's some logic introduced to lift it to the higher level of the serialized ExportedProgram. However, once that CustomClassHolder objects get lifted, we can remove the TODOs I added.
Test Plan: CI
Reviewed By: zhxchen17
Differential Revision: D51479125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114371
Approved by: https://github.com/ydwu4
Summary: Turn on verifier check for exportec program ctor. Note that this effectively detect a large surface of spec violations, so we also spend some time fixing them one by one in this diff.
Test Plan: CI
Differential Revision: D51014944
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113075
Approved by: https://github.com/angelayi
Previously we were generating a graph to add runtime assertions on inputs and then running that graph to check input constraints. This PR checks input constraints directly.
Differential Revision: D50289970
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111262
Approved by: https://github.com/zhxchen17
Fixes https://github.com/pytorch/pytorch/pull/102577#issuecomment-1650905536
Serializing to json is more stable, and renamed the API:
```
# Takes in a treespec and returns the serialized treespec as a string. Also optionally takes in a protocol version number.
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
# Takes in a serialized treespec and outputs a TreeSpec
def treespec_loads(data: str) -> TreeSpec:
```
If users want to register their own serialization format for a given pytree, they can go through the `_register_treespec_serializer` API which optionally takes in a `getstate` and `setstate` function.
```
_register_treespec_serializer(type_, *, getstate, setstate)
# Takes in the context, and outputs a json-dumpable context
def getstate(context: Context) -> DumpableContext:
# Takes in a json-dumpable context, and reconstructs the original context
def setstate(dumpable_context: DumpableContext) -> Context:
```
We will serialize to the following dataclass, and then json.dump this it to string.
```
class TreeSpec
type: Optional[str] # a string name of the type. null for the case of a LeafSpec
context: Optional[Any] # optional, a json dumpable format of the context
children_specs: List[TreeSpec],
}
```
If no getstate/setstate function is registered, we will by default serialize the context using `json.dumps/loads`. We will also serialize the type through `f"{typ.__module__}.{typ.__name__}"`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106116
Approved by: https://github.com/zou3519
Some NvidaTRT folks were asking for a way to integrate the serialization of custom objects with export's serialization. After some discussion (more background [here](https://docs.google.com/document/d/1lJfxakmgeoEt50inWZ53MdUtOSa_0ihwCuPy_Ak--wc/edit)), we settled on a way for users to register their custom object's serializer/deserializer functions.
Since TorchScript's `.def_pickle` already exists for [registering custom classes](https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html), and `tensorrt.ICudaEngine` already contains a `.def_pickle` implementation, we'll start off by reusing the existing framework and integrating it with export's serialization.
TorchScript's `.def_pickle` requires users to register two functions, which end up being the `__getstate__` and `__setstate__` methods on the class. The semantics of `__getstate__` and `__setstate__` in TorchScript are equivalent to that of Python pickle modules. This is then registered using pybind's `py::pickle` function [here](https://www.internalfb.com/code/fbsource/[f44e048145e4697bccfaec300798fce7daefb858]/fbcode/caffe2/torch/csrc/jit/python/script_init.cpp?lines=861-916) to be used with Python's pickle to initialize a ScriptObject with the original class, and set the state back to what it used to be.
I attempted to call `__getstate__` and `__setstate__` directly, but I couldn't figure out how to initial the object to be called with `__setstate__` in python. One option would be to create a `torch._C.ScriptObject` and then set the class and call `__setstate__`, but there is no constructor initialized for ScriptObjects. Another option would be to construct an instance of the serialized class itself, but if the class constructor required arguments, I wouldn't know what to initialize it with. In ScriptObject's `py::pickle` registration it directly creates the object [here](https://www.internalfb.com/code/fbsource/[f44e048145e4697bccfaec300798fce7daefb858]/fbcode/caffe2/torch/csrc/jit/python/script_init.cpp?lines=892-906), which is why I was thinking that just directly using Python's `pickle` will be ok since it is handled here.
So, what I did is that I check if the object is pickle-able, meaning it contains `__getstate__` and `__setstate__` methods, and if so, I serialize it with Python's pickle. TorchScript does have its own implementation of [pickle/unpickle](https://www.internalfb.com/code/fbsource/[59cbc569ccbcaae0db9ae100c96cf0bae701be9a][history]/fbcode/caffe2/torch/csrc/jit/serialization/pickle.h?lines=19%2C82), but it doesn't seem to have pybinded functions callable from python.
A question is -- is it ok to combine this pickle + json serialization?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107666
Approved by: https://github.com/gmagogsfm