Commit Graph

639 Commits

Author SHA1 Message Date
Edward Yang
09cb34c1dc [RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)
Summary:
Original: D81957844 and D81957923

Also, https://github.com/pytorch/pytorch/pull/162142 is patched in as well

#buildall

Test Plan:
sandcastle and oss ci

Rollback Plan:

Reviewed By: H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162594
Approved by: https://github.com/H-Huang, https://github.com/dcci
2025-09-22 21:12:18 +00:00
PyTorch MergeBot
edafc902d7 Revert "[BE] Make PyObjectSlot use a global PyInterpreter (#162659)"
This reverts commit d1993c27ae.

Reverted https://github.com/pytorch/pytorch/pull/162659 on behalf of https://github.com/wdvr due to reverted internally, please see D82771705 @PaliC ([comment](https://github.com/pytorch/pytorch/pull/162659#issuecomment-3317110247))
2025-09-22 06:22:37 +00:00
PyTorch MergeBot
f0078941cf Revert "[RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)"
This reverts commit 6c334885d4.

Reverted https://github.com/pytorch/pytorch/pull/162594 on behalf of https://github.com/wdvr due to reverted internally - @ezyang see D82281294 ([comment](https://github.com/pytorch/pytorch/pull/162594#issuecomment-3317017530))
2025-09-22 05:39:07 +00:00
Sherlock Huang
033b7d1e1a [Reland] Return NoOpDeviceGuardImpl in replace of CudaDeviceGuard when device is not available (#163187)
Reland of #160532

Summary:

To support exporting a cuda model on a CPU-only machine under fake tensor mode. User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call. This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
    cuda_module = module.to("cuda:0")
    cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
    with torch.no_grad():
        ep = torch.export.export(cuda_module, cuda_sample_inputs)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163016
Approved by: https://github.com/huydhn

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163187
Approved by: https://github.com/angelayi
2025-09-18 04:46:26 +00:00
Sahan Paliskara
d1993c27ae [BE] Make PyObjectSlot use a global PyInterpreter (#162659)
This pr gets rid of the pyobj_interpreter_ variable from PyObjectSlot and saves a word in the process

Gonna ask for review from @huydhn as there are some changes to CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162659
Approved by: https://github.com/albanD, https://github.com/huydhn
2025-09-17 16:40:55 +00:00
PyTorch MergeBot
79fd497423 Revert "[Reland] Return NoOpDeviceGuardImpl in replace of CudaDeviceGuard when device is not available, or cpu-only build (#163016)"
This reverts commit f1eb99e2e4.

Reverted https://github.com/pytorch/pytorch/pull/163016 on behalf of https://github.com/jeffdaily due to broke rocm CI, see export/test_export_opinfo.py::TestExportOnFakeCudaCUDA::test_fake_export_nonzero_cuda_float32 [GH job link](https://github.com/pytorch/pytorch/actions/runs/17787208381/job/50564369696) [HUD commit link](f1eb99e2e4) ([comment](https://github.com/pytorch/pytorch/pull/163016#issuecomment-3303707552))
2025-09-17 16:17:53 +00:00
Sherlock Huang
f1eb99e2e4 [Reland] Return NoOpDeviceGuardImpl in replace of CudaDeviceGuard when device is not available, or cpu-only build (#163016)
Reland of #160532

Summary:

To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
    cuda_module = module.to("cuda:0")
    cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
    with torch.no_grad():
        ep = torch.export.export(cuda_module, cuda_sample_inputs)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163016
Approved by: https://github.com/huydhn
2025-09-17 05:01:33 +00:00
PyTorch MergeBot
4db203f875 Revert "[BE] Make PyObjectSlot use a global PyInterpreter (#162659)"
This reverts commit 05ee8114f8.

Reverted https://github.com/pytorch/pytorch/pull/162659 on behalf of https://github.com/jeanschmidt due to seems to have introduced errors in linting see https://github.com/pytorch/pytorch/actions/runs/17750689989/job/50444910643 ([comment](https://github.com/pytorch/pytorch/pull/162659#issuecomment-3298626136))
2025-09-16 12:52:57 +00:00
PaliC
05ee8114f8 [BE] Make PyObjectSlot use a global PyInterpreter (#162659)
This pr gets rid of the pyobj_interpreter_ variable from PyObjectSlot and saves a word in the process

Gonna ask for review from @huydhn as there are some changes to CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162659
Approved by: https://github.com/albanD, https://github.com/huydhn
2025-09-16 00:37:09 +00:00
PyTorch MergeBot
9c93dc8123 Revert "Return NoOpDeviceGuardImpl in replace of CudaDeviceGuard when device is not available, or cpu-only build (#160532)"
This reverts commit a956c4ab1c.

Reverted https://github.com/pytorch/pytorch/pull/160532 on behalf of https://github.com/huydhn due to Reverted internally ([comment](https://github.com/pytorch/pytorch/pull/160532#issuecomment-3287745165))
2025-09-13 07:42:12 +00:00
Sherlock Huang
a956c4ab1c Return NoOpDeviceGuardImpl in replace of CudaDeviceGuard when device is not available, or cpu-only build (#160532)
Summary:

To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
    cuda_module = module.to("cuda:0")
    cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
    with torch.no_grad():
        ep = torch.export.export(cuda_module, cuda_sample_inputs)
```

Test Plan:
CI

Rollback Plan:

Differential Revision: D80181887

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160532
Approved by: https://github.com/henryoier, https://github.com/ezyang
2025-09-13 01:50:51 +00:00
Edward Yang
6c334885d4 [RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)
Summary:
Original: D81957844 and D81957923

Also, https://github.com/pytorch/pytorch/pull/162142 is patched in as well

#buildall

Test Plan:
sandcastle and oss ci

Rollback Plan:

Reviewed By: H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162594
Approved by: https://github.com/H-Huang, https://github.com/dcci
2025-09-12 10:54:42 +00:00
PyTorch MergeBot
6b59a19242 Revert "[RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)"
This reverts commit 6e8f17c580.

Reverted https://github.com/pytorch/pytorch/pull/162594 on behalf of https://github.com/huydhn due to Reverted internally ([comment](https://github.com/pytorch/pytorch/pull/162594#issuecomment-3283985880))
2025-09-12 06:52:03 +00:00
Edward Yang
6e8f17c580 [RELAND] Always build USE_DISTRIBUTED (#160449) and Make distributed modules importable even when backend not built (#159889) (#162594)
Summary:
Original: D81957844 and D81957923

Also, https://github.com/pytorch/pytorch/pull/162142 is patched in as well

#buildall

Test Plan:
sandcastle and oss ci

Rollback Plan:

Reviewed By: H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162594
Approved by: https://github.com/H-Huang, https://github.com/dcci
2025-09-12 03:56:18 +00:00
Edward Yang
dda071587f Revert "Make distributed modules importable even when backend not built (#159889)" (#162568)
This reverts commit a0d026688c.

Revert "Always build USE_DISTRIBUTED. (#160449)"

This reverts commit d80297a684.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162568
Approved by: https://github.com/huydhn
2025-09-10 04:29:42 +00:00
Edward Yang
d80297a684 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-08 19:10:36 +00:00
PyTorch MergeBot
1e0656f063 Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit de893e96c7.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to internal changes breaks import checks, see [D81845053](https://www.internalfb.com/diff/D81845053) ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3264887002))
2025-09-08 07:04:36 +00:00
Edward Yang
de893e96c7 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-05 20:15:11 +00:00
PyTorch MergeBot
adae7f66aa Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit c37103234a.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Breaking internal build rules, see D81756619 ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3259430011))
2025-09-05 18:58:47 +00:00
Edward Yang
c37103234a Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-04 19:43:17 +00:00
PyTorch MergeBot
b7dad7dd49 Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit 90b08643c3.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Already discussed with @ezyang about the internal quirks and errors ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3254219358))
2025-09-04 15:25:07 +00:00
Edward Yang
90b08643c3 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-03 07:33:55 +00:00
PyTorch MergeBot
4e42aa8ffc Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit b7034e9c92.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, can't be landed with forward fix due to internal tooling problems ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3246689684))
2025-09-02 20:28:42 +00:00
Edward Yang
b7034e9c92 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-01 23:00:21 +00:00
Benjamin Glass
cbc53b7696 Update pybind11 submodule to 3.0.1 (#160754)
Upgrade to PyBind11 v3. This allows us to strip out our own (possibly broken?) handling of the C++ ABI when building extensions, in favor of the more-complete PyBind11 internal handling.

Fixes a few test failures due to https://github.com/pybind/pybind11/issues/5774, which effectively makes the `__qualname__` attribute of functions platform-dependent.

Test plan: CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160754
Approved by: https://github.com/Skylion007
2025-08-27 21:15:01 +00:00
PyTorch MergeBot
1b34e04485 Revert "Update pybind11 submodule to 3.0.1 (#160754)"
This reverts commit 660b0b8128.

Reverted https://github.com/pytorch/pytorch/pull/160754 on behalf of https://github.com/atalman due to please see https://github.com/pytorch/pytorch/pull/160754#issuecomment-3226051449 ([comment](https://github.com/pytorch/pytorch/pull/160754#issuecomment-3226078102))
2025-08-26 23:35:22 +00:00
PyTorch MergeBot
9f6e1b8730 Revert "[ROCm] SDPA fix mem fault when dropout is enabled (#154864)"
This reverts commit 3caddd4daa.

Reverted https://github.com/pytorch/pytorch/pull/154864 on behalf of https://github.com/atalman due to reverted internally ([comment](https://github.com/pytorch/pytorch/pull/154864#issuecomment-3225554119))
2025-08-26 20:03:59 +00:00
Benjamin Glass
660b0b8128 Update pybind11 submodule to 3.0.1 (#160754)
Upgrade to PyBind11 v3. This allows us to strip out our own (possibly broken?) handling of the C++ ABI when building extensions, in favor of the more-complete PyBind11 internal handling.

Fixes a few test failures due to https://github.com/pybind/pybind11/issues/5774, which effectively makes the `__qualname__` attribute of functions platform-dependent.

Test plan: CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160754
Approved by: https://github.com/Skylion007
2025-08-26 01:21:18 +00:00
Aidyn-A
3e5b021f21 [ATen][CPU][Sparse] Use Third-Party Eigen for sparse add and addmm (#155357)
This pull request adds the following ops for sparse matrices using Eigen library:
```python
    add(a_csr, b_csr)
    add(a_csc, b_csc)

    addmm(c_csr, a_csr, b_csr)
    addmm(c_csr, a_csr, b_csc)
    addmm(c_csr, a_csc, b_csc)
    addmm(c_csr, a_csc, b_csr)

    addmm(c_csc, a_csr, b_csr)
    addmm(c_csc, a_csr, b_csc)
    addmm(c_csc, a_csc, b_csc)
    addmm(c_csc, a_csc, b_csr)
```

Currently, the operations for sparse matrices on CPU are available through MKL only. The non-existence of MKL on `aarch64` causes the unavailability of these ops on any machines with ARM based CPUs, including Apple Silicon, AWS Graviton and NVIDIA Grace. This PR addresses this issue by using Eigen as a backend for the above ops.

This is a re-factored version of my previous PR #101814. The main difference with the old one, this does not enable Eigen by default.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155357
Approved by: https://github.com/pearu, https://github.com/eqy

Co-authored-by: Eli Uriegas <eliuriegas@meta.com>
2025-08-23 19:03:55 +00:00
PyTorch MergeBot
fc0683b1e7 Revert "[ATen][CPU][Sparse] Use Third-Party Eigen for sparse add and addmm (#155357)"
This reverts commit ce048de608.

Reverted https://github.com/pytorch/pytorch/pull/155357 on behalf of https://github.com/seemethere due to This is causing buck builds to fail since we didn't add the definition of AT_USE_EIGEN_SPARSE in the buckbuild.bzl file, will follow-up and re-land this. ([comment](https://github.com/pytorch/pytorch/pull/155357#issuecomment-3212270510))
2025-08-21 22:38:40 +00:00
Andy Lugo
3caddd4daa [ROCm] SDPA fix mem fault when dropout is enabled (#154864)
Fixes issue that exhibited a device side memory access fault due to incorrect tensor life management

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154864
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-08-21 14:23:13 +00:00
Aidyn-A
ce048de608 [ATen][CPU][Sparse] Use Third-Party Eigen for sparse add and addmm (#155357)
This pull request adds the following ops for sparse matrices using Eigen library:
```python
    add(a_csr, b_csr)
    add(a_csc, b_csc)

    addmm(c_csr, a_csr, b_csr)
    addmm(c_csr, a_csr, b_csc)
    addmm(c_csr, a_csc, b_csc)
    addmm(c_csr, a_csc, b_csr)

    addmm(c_csc, a_csr, b_csr)
    addmm(c_csc, a_csr, b_csc)
    addmm(c_csc, a_csc, b_csc)
    addmm(c_csc, a_csc, b_csr)
```

Currently, the operations for sparse matrices on CPU are available through MKL only. The non-existence of MKL on `aarch64` causes the unavailability of these ops on any machines with ARM based CPUs, including Apple Silicon, AWS Graviton and NVIDIA Grace. This PR addresses this issue by using Eigen as a backend for the above ops.

This is a re-factored version of my previous PR #101814. The main difference with the old one, this does not enable Eigen by default.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155357
Approved by: https://github.com/pearu, https://github.com/eqy
2025-08-20 15:44:54 +00:00
Nikita Shulga
a06ec54d40 [MPS] Add API to query GPU core count (#160414)
Using good old IOKit to get `gpu-core-count` property from device implementing `AGXAccelerator` service
Expose this one as `torch.backend.mps.get_core_count()` and make it accessible via `MpsInterface` to the inductor

Test Plan: Run `python3 -c "import torch;print(torch.backends.mps.get_name(), torch.backends.mps.get_core_count())"` and compare it to `system_profiler SPDisplaysDataType|head -n10`
```
% python3 -c "import torch;print(torch.backends.mps.get_name(), torch.backends.mps.get_core_count())"
Apple M1 Pro 16
% system_profiler SPDisplaysDataType|head -n10
Graphics/Displays:

    Apple M1 Pro:

      Chipset Model: Apple M1 Pro
      Type: GPU
      Bus: Built-In
      Total Number of Cores: 16
      Vendor: Apple (0x106b)
      Metal Support: Metal 3
```

This would significantly improve occupancy for torch.compile generated kernels

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160414
Approved by: https://github.com/dcci
2025-08-14 00:05:17 +00:00
PaliC
1b99c1859c [BE] Make PyObjectSlot use a global PyInterpreter and remove (#158427)
This PR is a bit more involved but effectively works to drastically simplify PyObjectSlot and PyInterpreter.
1) For PyObjectSlot we now use a global pyinterpreter since there only is one. From here we change all of the call sites to rely on this assumption.
2) We also remove the "tags" of the PyInterpreter by deprecating `PyInterpreterStatus`.

For the reviewer, sadly it seems like `functorch/csrc/dim/dim.cpp` needed to get linted, so there is an unreadable amount of changes there. Fortunately, the only actual change in the file is as follows which just removes `getPyInterpreter()` from  the `check_pyobj` call.

```
 mpy::handle handle_from_tensor(Arena& A, TensorRef t) {
-    // fast case: tensor is live in python
-    std::optional<PyObject*> mb_obj =
-        t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter(), /*ignore_hermetic_tls=*/false);
-    if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
-        return *mb_obj;
-    }
-    return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
-}
-}
+  // fast case: tensor is live in python
+  std::optional<PyObject*> mb_obj =
+      t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
+          /*ignore_hermetic_tls=*/false);
+  if (mb_obj.has_value() &&
+      !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
+    return *mb_obj;
+  }
+  return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
+}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158427
Approved by: https://github.com/albanD
2025-07-30 17:29:43 +00:00
Zhengxu Chen
8460131087 [nativert] Add OSS version of ModelRunner (#159268)
Summary: Implement a ModelRunner from scratch with the minimum features for OSS only

Test Plan:
test_export -r NativeRT

Rollback Plan:

Differential Revision: D78979812

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159268
Approved by: https://github.com/dolpm
2025-07-29 21:08:14 +00:00
Jeff Daily
9b29166f57 [ROCm] add flag torch.backends.miopen.immediate (#158951)
The MIOpen integration has changed over the years.  In the past, the MIOpen default for benchmark was True and if it were set to False it would use MIOpen Immediate Mode.  But with #145294 the MIOpen benchmark default changed to False and to activate immediate mode you would set the deterministic flag to True.  This has proved too restrictive because benchmark and deterministic flags are independent from immediate mode.  Thus, immediate mode needs its own flag.  Though MIOpen still masquerades behind torch.backends.cudnn and its flags, it seemed inappropriate to add an miopen-exclusive flag to the set of cudnn flags.  This PR adds the first miopen-only flag to control its immediate mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158951
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-07-25 04:01:51 +00:00
PyTorch MergeBot
15a50dcf1c Revert "[BE] Make PyObjectSlot use a global PyInterpreter and remove (#158427)"
This reverts commit eb73650723.

Reverted https://github.com/pytorch/pytorch/pull/158427 on behalf of https://github.com/ZainRizvi due to Reverting this as part of reverting the stack for https://github.com/pytorch/pytorch/pull/158288 ([comment](https://github.com/pytorch/pytorch/pull/158427#issuecomment-3099815367))
2025-07-21 23:14:57 +00:00
Yukio Siraichi
a10f15718d [DLPack] Add support for missing keyword-arguments. (#150218)
This PR introduces the rest of the keyword-arguments added in DLPack
version 2023.12: `dl_device` and `copy`.

In summary, we handle these arguments in the C++ implementation of
`to_dlpack(...)` at _torch/csrc/Module.cpp_, by calling the
`maybeCopyTensor` function at _aten/src/ATen/DLConvertor.cpp_. It also
introduces the following changes:

- Add a new Python API `torchDeviceToDLDevice()`, which is simply a
  refactoring of the `getDLDevice()` function at
  _aten/src/ATen/DLConvertor.cpp_.
- Add both keyword-arguments to the `from_dlpack()` function at
  _torch/utils/dlpack.py_ and to the `Tensor.__dlpack__()` dunder
  method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150218
Approved by: https://github.com/albanD
ghstack dependencies: #150216, #150217
2025-07-20 00:46:20 +00:00
PaliC
eb73650723 [BE] Make PyObjectSlot use a global PyInterpreter and remove (#158427)
This PR is a bit more involved but effectively works to drastically simplify PyObjectSlot and PyInterpreter.
1) For PyObjectSlot we now use a global pyinterpreter since there only is one. From here we change all of the call sites to rely on this assumption.
2) We also remove the "tags" of the PyInterpreter by deprecating `PyInterpreterStatus`.

For the reviewer, sadly it seems like `functorch/csrc/dim/dim.cpp` needed to get linted, so there is an unreadable amount of changes there. Fortunately, the only actual change in the file is as follows which just removes `getPyInterpreter()` from  the `check_pyobj` call.

```
 mpy::handle handle_from_tensor(Arena& A, TensorRef t) {
-    // fast case: tensor is live in python
-    std::optional<PyObject*> mb_obj =
-        t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter(), /*ignore_hermetic_tls=*/false);
-    if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
-        return *mb_obj;
-    }
-    return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
-}
-}
+  // fast case: tensor is live in python
+  std::optional<PyObject*> mb_obj =
+      t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
+          /*ignore_hermetic_tls=*/false);
+  if (mb_obj.has_value() &&
+      !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
+    return *mb_obj;
+  }
+  return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
+}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158427
Approved by: https://github.com/albanD
2025-07-18 05:23:00 +00:00
Yu, Guangye
1b58e7adab fix storage use_count (#157694)
# Motivation
https://github.com/pytorch/pytorch/pull/155451 decoupled `torch._C._storage_Use_Count` from CUDA and introduced a corresponding unit test:
815545f2dd/test/test_torch.py (L257-L262)
However, this test fails when PyTorch is built with debug assertions enabled. @clee2000 disabled this UT in https://github.com/pytorch/pytorch/pull/156731. The root cause is that `_cdata` is obtained from an `intrusive_ptr`, not a `weak_intrusive_ptr`. As a result, calling `c10::weak_intrusive_ptr::use_count` on it triggers the internal assertion:
815545f2dd/c10/util/intrusive_ptr.h (L912-L917)
For example:
```python
a = torch.randn(10, device=device) # refcount=1, weakcount=1
prev_cf = torch._C._storage_Use_Count(a.untyped_storage()._cdata) # violate the assertation
```
This violates the expected invariant inside `weak_intrusive_ptr::use_count`, which assumes the pointer was originally constructed from a valid `weak_intrusive_ptr`. Actually, `storage_impl` is obtained from an `intrusive_ptr`.
815545f2dd/torch/csrc/Module.cpp (L2105-L2109)

# Solution
Use `c10::intrusive_ptr::use_count` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157694
Approved by: https://github.com/albanD
2025-07-08 05:53:12 +00:00
Yukio Siraichi
b54eac2a5e Upgrade to DLPack 1.0. (#145000)
This PR makes the necessary changes in order to upgrade PyTorch DLPack
support to version 1.0. In summary, we add support for the following:

- Support both `DLManagedTensor` and `DLManagedTensorVersioned` when
  producing and consuming DLPack capsules
- New parameter for `__dlpack__` method: `max_version`
- Version checks:
    - Fallback to old implementation if no `max_version` or if version
      lower than 1.0
    - Check that the to-be-consumed capsule is of version up to 1.X

In order to accommodate these new specifications, this PR adds the
following main changes:

- `torch._C._to_dlpack_versioned` Python API (Module.cpp): new Python
API for creating a versioned DLPack capsule (called by `__dlpack__`
method)
- `DLPackTraits<T>` class (DLConvertor.h): select the correct
traits (e.g. capsule name, conversion functions) depending on which
DLPack tensor class is being used
- `toDLPackImpl<T>` function (DLConvertor.cpp): populates the
common fields of both classes
- `fromDLPackImpl<T>` function (DLConvertor.cpp): constructs a tensor
from a DLPAck capsule
- `fillVersion<T>` function (DLConvertor.cpp): populates the version
field for `DLManagedTensorVersioned` (no-op for `DLManagedTensor`)
- `tensor_fromDLPackImpl<T>` function (tensor_new.cpp): outer function
for constructing a tensor out of a DLPack capsule that also marks the
capsule as used

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145000
Approved by: https://github.com/albanD
2025-06-30 16:58:06 +00:00
haozhe.zhu
53e0b9c393 refine fp32 precision api (#125888)
Based on the [conversation](https://github.com/pytorch/pytorch/issues/121791), we plan to drop the "highest, high, medium" to represent fp32  internal computation data types . Instead, we will directly use the algorithm to represent it.

### Design Choice: Directly use algorithms name like "TF32", "BF16".
#### Pros
 - The names are more informative. 'tf32' is more informative than a simple "high".
 - Easier to extend new algorithm like `tf32x3`
#### Cons
 - "HIGHEST, HIGH, MEDIUM" indicated the relative precision between different algorithms. However, we can have more documents to discuss them.

### We provide a layered structure for backends/operators.
('f32' is short for 'fp32_precision')
![image](https://github.com/user-attachments/assets/f89143e5-d6a1-4865-9351-9a50439f5067)

### We provide 3 fp32 compute precision can be set:
 - **"ieee"**: Not allowed to use any other internal computation data types .
 - **"tf32"**: Allowed to use tf32 as internal computation data types.
 - **"bf16"**: Allowed to use bf16 as internal computation data types.
 - **"none"**:  Precision's are not set. Can be override by its father node.

### Overriding Precision Settings
Child node can be override by its father node if it is set to default.
For current default settings:
```
backend = generic, op = all, precision setting = none
    backend = cuda, op = all, precision setting = none
        backend = cuda, op = conv, precision setting = tf32
        backend = cuda, op = rnn, precision setting = tf32
        backend = cuda, op = matmul, precision setting = none
    backend = matmul, op = all, precision setting = none
        backend = matmul, op = conv, precision setting = none
        backend = matmul, op = rnn, precision setting = none
        backend = matmul, op = matmul, precision setting = none
```
 - If the user set `torch.backends.mkldnn.fp32_precision="bf16"`, his child nodes `torch.backends.mkldnn.matmul.fp32_precision` / `torch.backends.mkldnn.conv.fp32_precision` / `torch.backends.mkldnn.rnn.fp32_precision` will also be override to "bf16".
 - If the user set `torch.backends.fp32_precision="bf16"`,  `torch.backends.mkldnn.fp32_precision` and his child nodes will also we override to "bf16".

### Backward Compatible
Since new API allow user to have more fine-grained control. There will be some conflict. For example, previous `torch.backends.cudnn.allow_tf32` are not enough to represent the status for `torch.backends.cudnn.rnn.fp32_precision="ieee"` and `torch.backends.cudnn.conv.fp32_precision="tf32"`. Therefore, our goal for backward compatible is
 - If the user only uses previous APIs, it will work as previous expectations.
 - If the user use **new** API to change the status to an **un-representable** status for old API, and try to access the status by **old** API. We will raise Runtime Error and point the document for user.

### Test Plan
```
python test/test_cuda.py -k test_fp32_precision_with_tf32
python test/test_cuda.py -k test_fp32_precision_with_float32_matmul_precision
python test/test_cuda.py -k test_invalid_status_for_legacy_api
python test/test_mkldnn.py -k test_mlkdnn_get_set
python test/test_mkldnn.py -k test_generic_precision
python test/test_mkldnn.py -k test_invalid
python test/test_mkldnn.py -k test_default_use_parent
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125888
Approved by: https://github.com/jgong5, https://github.com/albanD

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-06-26 10:32:20 +00:00
Aaron Orenstein
568ca89bac Add a crash handler to async compile subprocesses (#155068)
When the async compile subprocesses crash in C++ they tend to just silently die instead of leaving any kind of trace.  This installs a crash handler so that if they SEGV, ILL, or ABRT they'll attempt to output a backtrace instead.

While in there I also cleaned up the CLANGTIDY warnings coming from Module.cpp.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155068
Approved by: https://github.com/masnesral
2025-06-25 03:27:28 +00:00
Yuanyuan Chen
07bb097698 Fix clang-tidy bugprone* warnings (#148529)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148529
Approved by: https://github.com/ezyang
2025-06-23 23:09:56 +00:00
PyTorch MergeBot
f5e1b24945 Revert "Enable Leak Sanitizer (#154584)"
This reverts commit c79c7bbe61.

Reverted https://github.com/pytorch/pytorch/pull/154584 on behalf of https://github.com/cyyever due to Need to suppress more output ([comment](https://github.com/pytorch/pytorch/pull/154584#issuecomment-2995792265))
2025-06-23 10:08:40 +00:00
cyy
c79c7bbe61 Enable Leak Sanitizer (#154584)
It enables Leak Sanitizer and also provides a suppression file.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154584
Approved by: https://github.com/ezyang
2025-06-23 05:20:27 +00:00
PyTorch MergeBot
b4442f42a9 Revert "Upgrade to DLPack 1.0. (#145000)"
This reverts commit 6e185c5312.

Reverted https://github.com/pytorch/pytorch/pull/145000 on behalf of https://github.com/atalman due to failing internal tests ([comment](https://github.com/pytorch/pytorch/pull/145000#issuecomment-2992055400))
2025-06-20 15:32:47 +00:00
Yukio Siraichi
6e185c5312 Upgrade to DLPack 1.0. (#145000)
This PR makes the necessary changes in order to upgrade PyTorch DLPack
support to version 1.0. In summary, we add support for the following:

- Support both `DLManagedTensor` and `DLManagedTensorVersioned` when
  producing and consuming DLPack capsules
- New parameter for `__dlpack__` method: `max_version`
- Version checks:
    - Fallback to old implementation if no `max_version` or if version
      lower than 1.0
    - Check that the to-be-consumed capsule is of version up to 1.X

In order to accommodate these new specifications, this PR adds the
following main changes:

- `torch._C._to_dlpack_versioned` Python API (Module.cpp): new Python
API for creating a versioned DLPack capsule (called by `__dlpack__`
method)
- `DLPackTraits<T>` class (DLConvertor.h): select the correct
traits (e.g. capsule name, conversion functions) depending on which
DLPack tensor class is being used
- `toDLPackImpl<T>` function (DLConvertor.cpp): populates the
common fields of both classes
- `fromDLPackImpl<T>` function (DLConvertor.cpp): constructs a tensor
from a DLPAck capsule
- `fillVersion<T>` function (DLConvertor.cpp): populates the version
field for `DLManagedTensorVersioned` (no-op for `DLManagedTensor`)
- `tensor_fromDLPackImpl<T>` function (tensor_new.cpp): outer function
for constructing a tensor out of a DLPack capsule that also marks the
capsule as used

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145000
Approved by: https://github.com/albanD
2025-06-19 16:27:42 +00:00
Yu, Guangye
d84efde3f0 Move _storage_Use_Count to be gerneric (#155451)
# Motivation
`torch._C._storage_Use_Count` should be a generic API that is not aware of device type. It is also used in 337cd7c53d/torchtune/training/_activation_offloading.py (L323) to do some memory optimization.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155451
Approved by: https://github.com/albanD
2025-06-12 01:39:04 +00:00
PyTorch MergeBot
fdc387ec7c Revert "refine fp32 precision api (#125888)"
This reverts commit 4c11b26158.

Reverted https://github.com/pytorch/pytorch/pull/125888 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to cause some failures on ROCm ([comment](https://github.com/pytorch/pytorch/pull/125888#issuecomment-2869274791))
2025-05-11 00:35:46 +00:00