Commit Graph

70 Commits

Author SHA1 Message Date
Maggie Moss
8f80892359 Use correct pyrefly syntax in suppressions distributed/... (#166241)
Updates the pyrefy-ignores in the torch/distributed directory to use the correct syntax. No functional changes.

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166241
Approved by: https://github.com/oulgen
2025-10-26 04:16:41 +00:00
Phil Hu
cbcb4f7768 [pytorch][torchelastic] Duplicate stdout and stderr and apply custom filter in torchrun (#160712)
Summary:
Part of an effort to extract some important error logs (e.g. [#157996](https://github.com/pytorch/pytorch/pull/157996)) that was `tee`'ed to `stdout` and `stderr`.

The general idea is to:

- Duplicate the `tee`s on `stdout` and `stderr` to a separate file, `filtered_stdout.log` and `filtered_stderr.log`, respectively.
- In these files, as its name suggests, only log lines matching a customizable filter.
- Later on in another PR, append the contents of these files to the reply file.

Outline of changes in this PR:

- Enhance `TailLog` to be able to 1) stream to a file, and 2) only write when the line matches the passed filter.
- Add `filtered_stdout` and `filtered_stderr` to `LogsDest` and have `LogsSpecs` `reify` them.
- In `start_processes()` and `PContext`, add params `duplicate_stdout_filters` and `duplicate_stderr_filters` to filter and write the duplicated stream to the files above. When no filters are passed in, no duplicated streams are created.

Test Plan:
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:api_test
```
```
Buck UI: https://www.internalfb.com/buck2/f5c6b7da-217d-4a0b-872a-c7cd3d05587f
Test UI: https://www.internalfb.com/intern/testinfra/testrun/4222124951617688
Network: Up: 398B  Down: 44MiB  (reSessionID-a489a961-b602-45be-b851-3490ebb7a26a)
Analyzing targets. Remaining     0/200
Executing actions. Remaining     0/12856                                                                                                                                        0.1s exec time total
Command: test.     Finished 1 local
Time elapsed: 17:37.9s
Tests finished: Pass 52. Fail 0. Fatal 0. Skip 0. Build failure 0
```
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:tail_log_test
```
```
Buck UI: https://www.internalfb.com/buck2/d6d5c1c1-db98-4d9c-b608-7ba6fbb5e3ee
Test UI: https://www.internalfb.com/intern/testinfra/testrun/13510798985149262
Network: Up: 94KiB  Down: 417MiB  (reSessionID-27b46fba-d31c-4c04-8ede-a506454e6922)
Analyzing targets. Remaining     0/3                                                                                                                                            536 actions, 555 artifacts declared
Executing actions. Remaining     0/186                                                                                                                                          1:05.5s exec time total
Command: test.     Finished 7 local, 1 remote, 115 cache (93% hit)                                                                                                              37.0s exec time cached (56%)
Time elapsed: 1:11.5s
Tests finished: Pass 7. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Rollback Plan:

Differential Revision: D80188995

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160712
Approved by: https://github.com/fduwjj
2025-10-23 14:22:21 +00:00
PyTorch MergeBot
d2494cbb2b Revert "[distributed] Replace assert statements with AssertionError exceptions (#165216)"
This reverts commit 74db92b218.

Reverted https://github.com/pytorch/pytorch/pull/165216 on behalf of https://github.com/clee2000 due to I think this broke distributed/test_pg_wrapper.py::ProcessGroupNCCLWrapperTest::test_debug_level_detail_no_gloo [GH job link](https://github.com/pytorch/pytorch/actions/runs/18492765290/job/52693842750) [HUD commit link](74db92b218), note to self: bad TD ([comment](https://github.com/pytorch/pytorch/pull/165216#issuecomment-3402838765))
2025-10-14 17:05:16 +00:00
Rohit Singh Rathaur
74db92b218 [distributed] Replace assert statements with AssertionError exceptions (#165216)
Replaces 71 assert statements across 11 files in `torch.distributed` with explicit if-checks raising AssertionError to prevent assertions from being disabled with Python -O flag.

Fixes #164878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165216
Approved by: https://github.com/albanD
2025-10-14 09:58:59 +00:00
Maggie Moss
7457d139c5 Add pyrefly suppressions to torch/distributed (7/n) (#165002)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

One more PR after this one.

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165002
Approved by: https://github.com/oulgen
2025-10-09 04:08:25 +00:00
Yuanyuan Chen
da003d7b95 [3/N] Import Callable from collections.abc in torch/distributed (#164104)
This is the result of applying the ruff `UP035` check.
`Callable` is imported from `collections.abc` instead of `typing`.
This PR is the follow-up of #164054.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164104
Approved by: https://github.com/Skylion007
2025-09-30 00:28:53 +00:00
Yuanyuan Chen
c2862c8e66 [distributed] Remove python code older than 3.10 (#163613)
Because now that the minimum Python version is 3.10

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163613
Approved by: https://github.com/XuehaiPan, https://github.com/kwen2501
2025-09-28 04:15:24 +00:00
Miroslaw Oksiucik
66c0f14ecc Support XPU in --nproc-per-node option to torchrun (#159474)
Support both --nproc-per-node=xpu and autodetection of XPU device in case of --nproc-per-node=auto

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159474
Approved by: https://github.com/tsocha, https://github.com/guangyey, https://github.com/d4l3k

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
2025-09-12 08:32:04 +00:00
SandishKumarHN
b498299953 154849 Add support to handle IGUSR1 and SIGUSR2 in multiprocessing (#160690)
Fixes #154849

This change addresses the request to add support for SIGUSR1 and SIGUSR2 signals in torchrun for SLURM environments.  Changes supports these signals through the configurable `TORCHELASTIC_SIGNALS_TO_HANDLE` environment variable and signals_to_handle parameter from laucher api

Tests:
For validations purpose:
test_signal_handling.py,
simple_test_api_signal_handling.py,

Unit Tests:
for launcher changes:launcher/test_api.py
for api changes:  multiprocessing/test_api.py
E2E: test_run.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160690
Approved by: https://github.com/fduwjj
2025-09-09 22:23:06 +00:00
Paul de Supinski
7e91394955 Support NUMA Binding for Callable Entrypoints (#160163)
# Context
This is an extension of #149334.

# This PR
Add support for NUMA bindings with Callable entrypoints, such as `do_train` instead of `/usr/local/bin/python`.

Most notably, we utilize a hack in order to force `Process.start()` to use custom NUMA bindings for each subprocess. Please search for `HACK:` in the code to see a description of the implementation we chose, and #160006 for discussion of alternatives and why this is necessary.

Other changes:
* Remove unnecessary `--preferred` option from all binding strategies. By default, Linux already allocates memory to the NUMA node local to the CPU which triggered the allocation. (See [MPOL_LOCAL](https://man7.org/linux/man-pages/man2/set_mempolicy.2.html).)
* Refactor so that the main API is `maybe_wrap_command_with_numa_bindings`, which computes bindings for a single rank at a time, rather than `maybe_wrap_with_numa_bindings` which computed bindings for all ranks at once. This allowed for more code sharing between `Callable` and `str` entrypoints.

# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`

## Manual
Using [this benchmark,](https://gist.github.com/pdesupinski/bbe01ade455d86e989794f2c612e2d91), ran

```
$ PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -m torch.distributed.run --standalone --nproc-per-node=8 --numa-binding=node --run-path mlp_train.py 2>&1 | tee node_callable.txt && PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -u -m torch.distributed.run --standalone --nproc-per-node=8 --run-path mlp_train.py 2>&1 | tee none_callable.txt
```

and observed
* 6.6% remote memory accesses with 'node' bindings
* 11.6% remote without bindings

I also ran similar with `str` entrypoints as before just to be sure it's still working.

NOTE: [--run-path triggers the code to be run inside a `Callable`.](017259f9c6/torch/distributed/run.py (L870))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160163
Approved by: https://github.com/d4l3k
2025-08-12 20:08:49 +00:00
raghavhrishi
7ef3c3357d NUMA binding integration with elastic agent and torchrun (#149334)
Implements #148689

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149334
Approved by: https://github.com/d4l3k

Co-authored-by: Paul de Supinski <pdesupinski@gmail.com>
2025-07-25 21:19:49 +00:00
Xuehai Pan
4ccc0381de [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-23 02:57:28 +00:00
PyTorch MergeBot
145d4cdc11 Revert "[BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)"
This reverts commit c2f0292bd5.

Reverted https://github.com/pytorch/pytorch/pull/156315 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
Xuehai Pan
c2f0292bd5 [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-22 08:43:26 +00:00
Amandeep Chhabra
e15848669f [1/n]adding torch.distributed.run option to provide destination for event logging (#154644) (#155268)
Summary:

**Problem Statement**
Currently, torch distributed elastic does not support to an option specify destination for event logging from torch.distributed.run.
*recording events to default destination:* https://fburl.com/code/7f9b0993
The default destination is "null".

***Solution***
adding option in torch.destributed.run to specify event_logging_destination. The default value will be "null" which is current default so it won;t affect users unless the specify it via command line.

Test Plan:

https://www.internalfb.com/mlhub/pipelines/runs/mast/f738408681-TrainingApplication_torch_distributed_run_3?job_attempt=0&version=0&tab=execution_details&env=PRODUCTION

Rollback Plan:

Reviewed By: kiukchung

Differential Revision: D75183591

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155268
Approved by: https://github.com/d4l3k
2025-06-09 10:43:52 +00:00
Xuehai Pan
995df34b19 [BE][PYFMT] migrate PYFMT for torch.{distributed,distributions} to ruff format (#144547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144547
Approved by: https://github.com/kwen2501
2025-02-28 07:35:56 +00:00
Fernando Pérez-García
d79c6f4946 Improve torchrun documentation (#144354)
Fixes #142042:
- #142042

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144354
Approved by: https://github.com/c-p-i-o, https://github.com/H-Huang
2025-01-24 20:40:05 +00:00
Aaron Orenstein
00ffeca1b1 PEP585 update - torch/distributed (#145164)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145164
Approved by: https://github.com/bobrenjc93
2025-01-21 04:23:29 +00:00
PyTorch MergeBot
6374332d33 Revert "PEP585 update - torch/distributed (#145164)"
This reverts commit 6cb186e279.

Reverted https://github.com/pytorch/pytorch/pull/145164 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing an inductor test ([comment](https://github.com/pytorch/pytorch/pull/145164#issuecomment-2602875679))
2025-01-20 16:46:46 +00:00
Aaron Orenstein
6cb186e279 PEP585 update - torch/distributed (#145164)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145164
Approved by: https://github.com/bobrenjc93
2025-01-20 00:19:01 +00:00
bobrenjc93
08be9ec312 Migrate from Tuple -> tuple in torch/distributed (#144258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144258
Approved by: https://github.com/aorenste
2025-01-10 08:34:54 +00:00
Aaron Gokaslan
72c6d13cea [BE]: Use proper logger in torch.distributed.run (#140547)
`torch.distributed.run` was improperly using the root logger and ignoring all logging settings and useful debugging info. Now properly uses the correct logger. Will be added to ruff as part of LOG015 soon.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140547
Approved by: https://github.com/XuehaiPan, https://github.com/fegin
2024-11-14 14:49:17 +00:00
Howard Huang
1eedb0a962 fix torchrun log message (#131652)
fixes https://github.com/pytorch/pytorch/issues/131461

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131652
Approved by: https://github.com/awgu
2024-07-25 14:50:10 +00:00
Xuehai Pan
94dc3253a0 [BE][Easy] enable UFMT for torch/distributed/ (#128870)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128870
Approved by: https://github.com/fegin, https://github.com/wconstab
2024-06-22 18:53:28 +00:00
PyTorch MergeBot
9c929f6ce9 Revert "[BE][Easy] enable UFMT for torch/distributed/ (#128870)"
This reverts commit a0e1e20c41.

Reverted https://github.com/pytorch/pytorch/pull/128870 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/128870#issuecomment-2181780356))
2024-06-21 00:38:28 +00:00
Xuehai Pan
a0e1e20c41 [BE][Easy] enable UFMT for torch/distributed/ (#128870)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128870
Approved by: https://github.com/fegin
ghstack dependencies: #128868, #128869
2024-06-18 21:49:08 +00:00
Tristan Rice
7c370d2fb0 expose set_thread_name to Python and set thread names (#128448)
This adds a new multiprocessing method `_set_thread_name` and calls it from torchelastic and dataloader main functions. This will allow better monitoring of processes as we can separate elastic and dataloading processes from the main training process.

Threads named:

* torchrun/elastic
* PyTorch dataloader worker processes + pin memory thread
* TCPStore
* ProcessGroupNCCL background threads
* WorkerServer httpserver thread

Test plan:

```
$ torchrun --nnodes 1 --nproc_per_node 1 --no-python /bin/bash -c 'ps -eL | grep pt_'
3264281 3264281 pts/45   00:00:02 pt_elastic
3264281 3267950 pts/45   00:00:00 pt_elastic
```

dataloading

```py
import torch
import time

from torch.utils.data import (
    DataLoader,
    Dataset,
)

class NoopDataset(Dataset):
    def __getitem__(self, index):
        return index

    def __len__(self):
        return 10

dataloader = DataLoader(NoopDataset(), num_workers=2)

for i, x in enumerate(dataloader):
    print(i, x)
    time.sleep(10000)
```

```
$ python3 ~/scripts/dataloader_test.py
$ ps -eL | grep pt_
1228312 1228312 pts/45   00:00:02 pt_main_thread
1228312 1230058 pts/45   00:00:00 pt_main_thread
1228312 1230059 pts/45   00:00:00 pt_main_thread
1230052 1230052 pts/45   00:00:00 pt_data_worker
1230052 1230198 pts/45   00:00:00 pt_data_worker
1230052 1230740 pts/45   00:00:00 pt_data_worker
1230055 1230055 pts/45   00:00:00 pt_data_worker
1230055 1230296 pts/45   00:00:00 pt_data_worker
1230055 1230759 pts/45   00:00:00 pt_data_worker
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128448
Approved by: https://github.com/c-p-i-o, https://github.com/andrewkho, https://github.com/rsdcastro
2024-06-13 16:38:23 +00:00
Aaron Orenstein
7c12cc7ce4 Flip default value for mypy disallow_untyped_defs [6/11] (#127843)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127843
Approved by: https://github.com/oulgen
ghstack dependencies: #127842
2024-06-08 18:49:29 +00:00
Aaron Gokaslan
8cad88e1f3 [BE]: Improve exception typing. Remove NOQAs (#125535)
Improve some exception typing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125535
Approved by: https://github.com/albanD
2024-05-08 14:07:13 +00:00
Tristan Rice
952a00eda7 torchelastic: change monitor_interval default to 0.1 (#124692)
This reduces the default monitor_interval for torchelastic to 0.1s as testing shows negligble load for common use cases. Even at the extremes, 100k processes is only 45.4% cpu util of a single core.

Torchelastic monitor_interval only monitors the processes on a single worker so under typical loads even for huge jobs we expect ~8 subprocesses per machine with one per GPU.

As an external datapoint, Python's wait polls every 50usec-50ms (https://github.com/python/cpython/blob/main/Lib/subprocess.py#L2035).

## Motivation

This setting is used to control how frequently we poll for failed processes in elastic.

* For some jobs of note we run elastic 3 times per try so with the default timeout of 5 seconds we should save ~15 seconds per retry.
* @kiukchung's use case: Apparently this is annoying in notebooks etc since it adds delay to shutdown when testing things

## Results

This is measured in cores (100% is a single core under full load).

| monitor_interval (s) | nproc-per-node | CPU util (highest observed) |
| -------------------- | -------------- | --------------------------- |
| 1.0                  | 10             | 0.2%                        |
| 0.1                  | 1              | 0.4%                        |
| 0.1                  | 10             | 0.4%                        |
| 0.01                 | 10             | 0.9%                        |
| 0.001                | 10             | 4.0%                        |
| 0.1                  | 100            | 0.5%                        |
| 0.1                  | 1000           | 2.2%                        |
| 0.1                  | 10000          | 15.7%                       |
| 0.1                  | 100000         | 45.4%                       |

## Methodology

```sh
# run command
$ LOGLEVEL=INFO torchrun --nnodes 1 --nproc-per-node 10 --monitor-interval 0.1 ~/wait.py

# wait a few seconds for all processes to start and reach steady state and then run, wait ~30s or 3 prints and take the highest
$ top -b -d 10 -c | rg 'torchrun.*wait
```

wait.py

```py
import time

time.sleep(10*60)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124692
Approved by: https://github.com/kiukchung, https://github.com/kurman
2024-04-24 01:44:41 +00:00
Aaron Gokaslan
c5fafe9f48 [BE]: TRY002 - Ban raising vanilla exceptions (#124570)
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.

I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
2024-04-21 22:26:40 +00:00
Xuehai Pan
0eab740db3 [Docs][Distributed] Add migration notes for --local-rank option style change for torchrun in PyTorch 2.0 (#109480)
Fixes https://github.com/pytorch/pytorch/pull/94505#issuecomment-1722777767

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109480
Approved by: https://github.com/ezyang
2024-04-16 05:51:57 +00:00
Chirag Pandya
b6201a60c5 [BE] minor logging cleanup in distributed (#122921)
Summary:
    Minor logging cleanup in distributed library
    1. Don't use "f" formatted strings - address linter issues.
    2. Nits: Make use of unused `e` (error) in a few logs.
    3. Change info->debug as asked in issue #113545
    4. Nit: rename log -> logger in a few files for consistency
    5. Fix a linter error.

    Test Plan:
    1. Local build passes.
    2. Linter is happy.

    Reviewers: wanchaol

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122921
Approved by: https://github.com/wanchaol
2024-03-29 03:34:01 +00:00
Kurman Karabukaev
b0cfa96e82 [Torchelastic][Logging] Pluggable logsspecs using python entrypoints and option to specify one by name. (#120942)
Summary:
Expose an option to users to specify name of the LogsSpec implementation to use.
- Has to be defined in entrypoints under `torchrun.logs_specs` group.
- Must implement LogsSpec defined in prior PR/diff.

Test Plan: unit test+local tests

Reviewed By: ezyang

Differential Revision: D54180838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120942
Approved by: https://github.com/ezyang
2024-03-02 08:07:52 +00:00
Kurman Karabukaev
67d3e4f2a2 [TorchElastic] Refactoring to support non-default logging strategy (#120691)
Summary:
Pulling out logging parameters into a logging specs that can be overridden (follow-up changes on possible mechanism)

Why?
Right now the logging approach is quite rigid:
- Requires for log directory to exist and not be empty
- Will create tempdir otherwise,
- Creates subdir for a run
- creates subdir for each attempt
- creates files named as stdout.log, stderr.log, error.json

In some instances some of the users would like to customize the behavior including file names based on context. And we do have right now a mechanism to template multiplexed teed output prefix.

With current changes, users can create custom log spec that can use env variables to change the behavior.

Notes:
Made `LaunchConf.logs_specs` as an optional field that will be bound to `DefaultLogsSpecs` instance. There are large number of clients (code) that use the API directly without using torchrun API. For those cases, we have to explicitly pass LogSpecs implementation if we would like to override the implementation. For the regular torchrun users, we can use pluggable approach proposed in the follow up change.

Test Plan: CI + unit tests

Differential Revision: D54176265

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120691
Approved by: https://github.com/ezyang
2024-02-29 20:59:17 +00:00
Simon Fan
284b0b5f44 Add --local-ranks-filter to torchrun: allow logs filtering by rank (#118562)
Addresses issue https://github.com/pytorch/pytorch/issues/117383

The implementation exposes `--local-ranks-filter` which filters by rank which files we pass to `TailLog` (used in torchrun to determine which logs to output to stdout/stderr)

## Behavior
### with --tee
Currently --tee is implemented as --redirect to file, and streams file to console using `tail`. When --tee is specified, file logs will be unaffected and we will only filter the output to console.

### with --redirect
When --redirect is specified without --tee, nothing is logged to console, so we no-op.

### with neither
When neither --tee or --redirect are specified, torchrun uses empty string "" to indicate logging to console. We intercept this empty string, and redirect it to "/dev/null" to not print to console.

The api also allows a per-rank configuration for --tee and --redirect, and is also supported by this filter implementation.

## Usage
### without --tee
```
> TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" TORCH_LOGS="graph" torchrun --standalone --nproc_per_node=2 --role rank --local_rank_filter=0 t.py
hello from rank 0 python
DEBUG: TRACED GRAPH
 __compiled_fn_0 <eval_with_key>.0 opcode         name    target                   args       kwargs
-------------  ------  -----------------------  ---------  --------
placeholder    l_x_    L_x_                     ()         {}
call_function  mul     <built-in function mul>  (l_x_, 5)  {}
output         output  output                   ((mul,),)  {}
...
```
### with --tee
```
> TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" TORCH_LOGS="graph" torchrun --standalone --nproc_per_node=2 --role rank --tee 3 --local_rank_filter=0 t.py
[rank0]:hello from rank 0 python
[rank0]:DEBUG: TRACED GRAPH
[rank0]: __compiled_fn_0 <eval_with_key>.0 opcode         name    target                   args       kwargs
[rank0]:-------------  ------  -----------------------  ---------  --------
[rank0]:placeholder    l_x_    L_x_                     ()         {}
[rank0]:call_function  mul     <built-in function mul>  (l_x_, 5)  {}
[rank0]:output         output  output                   ((mul,),)  {}
...
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118562
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2024-02-07 04:29:54 +00:00
PyTorch MergeBot
a4355d6b9a Revert "Add --filter-rank to torchrun: allow logs filtering by rank (#118562)"
This reverts commit 73229b4f93.

Reverted https://github.com/pytorch/pytorch/pull/118562 on behalf of https://github.com/xmfan due to breaks MAST precheck, flag naming conflict ([comment](https://github.com/pytorch/pytorch/pull/118562#issuecomment-1924916601))
2024-02-02 23:56:21 +00:00
Simon Fan
73229b4f93 Add --filter-rank to torchrun: allow logs filtering by rank (#118562)
Addresses issue https://github.com/pytorch/pytorch/issues/117383

The implementation exposes `--filter-ranks` which filters by rank which files we pass to `TailLog` (used in torchrun to determine which logs to output to stdout/stderr)

## Behavior
### with --tee
Currently --tee is implemented as --redirect to file, and streams file to console using `tail`. When --tee is specified, file logs will be unaffected and we will only filter the output to console.

### with --redirect
When --redirect is specified without --tee, nothing is logged to console, so we no-op.

### with neither
When neither --tee or --redirect are specified, torchrun uses empty string "" to indicate logging to console. We intercept this empty string, and redirect it to "/dev/null" to not print to console.

The api also allows a per-rank configuration for --tee and --redirect, and is also supported by this filter implementation.

## Usage
### without --tee
```
> TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" TORCH_LOGS="graph" torchrun --standalone --nproc_per_node=2 --role rank --filter_ranks=0 t.py
hello from rank 0 python
DEBUG: TRACED GRAPH
 __compiled_fn_0 <eval_with_key>.0 opcode         name    target                   args       kwargs
-------------  ------  -----------------------  ---------  --------
placeholder    l_x_    L_x_                     ()         {}
call_function  mul     <built-in function mul>  (l_x_, 5)  {}
output         output  output                   ((mul,),)  {}
...
```
### with --tee
```
> TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" TORCH_LOGS="graph" torchrun --standalone --nproc_per_node=2 --role rank --tee 3 --filter_ranks=0 t.py
[rank0]:hello from rank 0 python
[rank0]:DEBUG: TRACED GRAPH
[rank0]: __compiled_fn_0 <eval_with_key>.0 opcode         name    target                   args       kwargs
[rank0]:-------------  ------  -----------------------  ---------  --------
[rank0]:placeholder    l_x_    L_x_                     ()         {}
[rank0]:call_function  mul     <built-in function mul>  (l_x_, 5)  {}
[rank0]:output         output  output                   ((mul,),)  {}
...
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118562
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2024-01-31 07:40:01 +00:00
Wanchao Liang
d416e5b34f [torchrun] fix incorrect warning for non static backend (#114335)
This PR fixes a incorrect warning for non static rdzv backend, the
warning should only be thrown when the rdzv endpoint not specified.

error repro from @stas00

```
$ cat test.py
import torch

$ python -u -m torch.distributed.run --nproc_per_node=1 --rdzv_endpoint localhost:6000  --rdzv_backend c10d test.py
master_addr is only used for static rdzv_backend and when rdzv_endpoint is not specified
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114335
Approved by: https://github.com/H-Huang
2023-11-22 20:09:14 +00:00
ooooo
a8097ed479 Fix docstring errors in _composable_state.py, remote_device.py, value_ranges.py, utils.py, run.py, rendezvous.py, launch.py, argparse_util.py, __init__.py, _cycles.py (#112953)
Fixes #112639

```txt
 torch/utils/_sympy/value_ranges.py
 torch/utils/_sympy/value_ranges.py:60 in public class `ValueRanges`:
        D101: Missing docstring in public class
torch/utils/_sympy/value_ranges.py:68 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_sympy/value_ranges.py:81 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:86 in public method `tighten`:
        D400: First line should end with a period (not 'n')
torch/utils/_sympy/value_ranges.py:90 in public method `__and__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:103 in public method `__or__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:113 in public method `is_singleton`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:118 in public method `unknown`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:122 in public method `wrap`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:129 in public method `increasing_map`:
        D400: First line should end with a period (not ')')
torch/utils/_sympy/value_ranges.py:135 in public method `decreasing_map`:
        D400: First line should end with a period (not ')')
torch/utils/_sympy/value_ranges.py:141 in public method `monotone_map`:
        D400: First line should end with a period (not 'g')
torch/utils/_sympy/value_ranges.py:149 in public method `convex_min_zero_map`:
        D400: First line should end with a period (not '0')
torch/utils/_sympy/value_ranges.py:149 in public method `convex_min_zero_map`:
        D403: First word of the first line should be properly capitalized ('Fn', not 'fn')
torch/utils/_sympy/value_ranges.py:158 in public method `coordinatewise_increasing_map`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_sympy/value_ranges.py:158 in public method `coordinatewise_increasing_map`:
        D400: First line should end with a period (not ':')
torch/utils/_sympy/value_ranges.py:171 in public method `coordinatewise_monotone_map`:
        D400: First line should end with a period (not 'e')
torch/utils/_sympy/value_ranges.py:180 in private class `SymPyValueRangeAnalysis`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_sympy/value_ranges.py:180 in private class `SymPyValueRangeAnalysis`:
        D400: First line should end with a period (not 's')
torch/utils/_sympy/value_ranges.py:386 in private method `reciprocal`:
        D210: No whitespaces allowed surrounding docstring text
torch/utils/_sympy/value_ranges.py:386 in private method `reciprocal`:
        D400: First line should end with a period (not 'n')
torch/utils/_sympy/value_ranges.py:488 in public class `ValueRangeAnalysis`:
        D101: Missing docstring in public class
torch/utils/_sympy/value_ranges.py:489 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_sympy/value_ranges.py:501 in public method `bool_handler`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:506 in public method `default_handler`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:511 in public method `load`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:514 in public method `store`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:517 in public method `reduction`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:520 in public method `index_expr`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:525 in public method `to_dtype`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:558 in public method `square`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:562 in public method `neg`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:566 in public method `truncdiv`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:577 in public method `sub`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:580 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:585 in public function `bound_sympy`:
        D103: Missing docstring in public function
36
torch/utils/_sympy/value_ranges.py:60 in public class `ValueRanges`:
        D101: Missing docstring in public class
torch/utils/_sympy/value_ranges.py:68 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_sympy/value_ranges.py:81 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:86 in public method `tighten`:
        D400: First line should end with a period (not 'n')
torch/utils/_sympy/value_ranges.py:90 in public method `__and__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:103 in public method `__or__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:113 in public method `is_singleton`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:118 in public method `unknown`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:122 in public method `wrap`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:182 in private class `SymPyValueRangeAnalysis`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/_sympy/value_ranges.py:182 in private class `SymPyValueRangeAnalysis`:
        D400: First line should end with a period (not 's')
torch/utils/_sympy/value_ranges.py:388 in private method `reciprocal`:
        D210: No whitespaces allowed surrounding docstring text
torch/utils/_sympy/value_ranges.py:388 in private method `reciprocal`:
        D400: First line should end with a period (not 'n')
torch/utils/_sympy/value_ranges.py:490 in public class `ValueRangeAnalysis`:
        D101: Missing docstring in public class
torch/utils/_sympy/value_ranges.py:491 in public method `__init__`:
        D107: Missing docstring in __init__
torch/utils/_sympy/value_ranges.py:503 in public method `bool_handler`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:508 in public method `default_handler`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:513 in public method `load`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:516 in public method `store`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:519 in public method `reduction`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:522 in public method `index_expr`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:527 in public method `to_dtype`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:560 in public method `square`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:564 in public method `neg`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:568 in public method `truncdiv`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:579 in public method `sub`:
        D102: Missing docstring in public method
torch/utils/_sympy/value_ranges.py:582 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/utils/_sympy/value_ranges.py:587 in public function `bound_sympy`:
        D103: Missing docstring in public function
28

torch/utils/viz/_cycles.py
torch/utils/viz/_cycles.py:14 in public function `observe_garbage`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:207 in public function `object_annotation`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/viz/_cycles.py:207 in public function `object_annotation`:
        D400: First line should end with a period (not 'g')
torch/utils/viz/_cycles.py:256 in public class `Node`:
        D101: Missing docstring in public class
torch/utils/viz/_cycles.py:262 in public function `create_graph`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:308 in public function `escape`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:312 in public function `is_cuda_tensor`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:315 in public function `cuda_allocation_context`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:335 in public function `to_dot`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:406 in public function `to_html`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:416 in public function `observe_tensor_cycles`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:429 in public function `warn_tensor_cycles`:
        D205: 1 blank line required between summary line and description (found 0)
torch/utils/viz/_cycles.py:429 in public function `warn_tensor_cycles`:
        D400: First line should end with a period (not 'p')
torch/utils/viz/_cycles.py:429 in public function `warn_tensor_cycles`:
        D401: First line should be in imperative mood; try rephrasing (found 'Reference')
14
torch/utils/viz/_cycles.py:14 in public function `observe_garbage`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:256 in public class `Node`:
        D101: Missing docstring in public class
torch/utils/viz/_cycles.py:262 in public function `create_graph`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:308 in public function `escape`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:312 in public function `is_cuda_tensor`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:315 in public function `cuda_allocation_context`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:335 in public function `to_dot`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:406 in public function `to_html`:
        D103: Missing docstring in public function
torch/utils/viz/_cycles.py:416 in public function `observe_tensor_cycles`:
        D103: Missing docstring in public function
9

torch/distributed/argparse_util.py
torch/distributed/argparse_util.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/argparse_util.py:13 in public class `env`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/argparse_util.py:13 in public class `env`:
        D400: First line should end with a period (not 'g')
torch/distributed/argparse_util.py:13 in public class `env`:
        D412: No blank lines allowed between a section header and its content ('Example')
torch/distributed/argparse_util.py:43 in public method `__init__`:
        D107: Missing docstring in __init__
torch/distributed/argparse_util.py:56 in public method `__call__`:
        D102: Missing docstring in public method
torch/distributed/argparse_util.py:61 in public class `check_env`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/argparse_util.py:61 in public class `check_env`:
        D400: First line should end with a period (not 's')
torch/distributed/argparse_util.py:61 in public class `check_env`:
        D412: No blank lines allowed between a section header and its content ('Example')
torch/distributed/argparse_util.py:97 in public method `__init__`:
        D107: Missing docstring in __init__
torch/distributed/argparse_util.py:102 in public method `__call__`:
        D102: Missing docstring in public method
11
torch/distributed/argparse_util.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/argparse_util.py:43 in public method `__init__`:
        D107: Missing docstring in __init__
torch/distributed/argparse_util.py:56 in public method `__call__`:
        D102: Missing docstring in public method
torch/distributed/argparse_util.py:97 in public method `__init__`:
        D107: Missing docstring in __init__
torch/distributed/argparse_util.py:102 in public method `__call__`:
        D102: Missing docstring in public method
5

torch/distributed/_composable_state.py
torch/distributed/_composable_state.py:20 in private function `_get_module_state`:
        D202: No blank lines allowed after function docstring (found 1)
torch/distributed/_composable_state.py:20 in private function `_get_module_state`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/_composable_state.py:20 in private function `_get_module_state`:
        D400: First line should end with a period (not '`')
3
0

torch/distributed/launch.py
torch/distributed/launch.py:1 at module level:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/launch.py:1 at module level:
        D400: First line should end with a period (not 'd')
torch/distributed/launch.py:156 in public function `parse_args`:
        D103: Missing docstring in public function
torch/distributed/launch.py:171 in public function `launch`:
        D103: Missing docstring in public function
torch/distributed/launch.py:180 in public function `main`:
        D103: Missing docstring in public function
5
torch/distributed/launch.py:157 in public function `parse_args`:
        D103: Missing docstring in public function
torch/distributed/launch.py:172 in public function `launch`:
        D103: Missing docstring in public function
torch/distributed/launch.py:181 in public function `main`:
        D103: Missing docstring in public function
3

torch/distributed/remote_device.py
torch/distributed/remote_device.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/remote_device.py:81 in private method `worker_name`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/remote_device.py:81 in private method `worker_name`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/distributed/remote_device.py:88 in private method `rank`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/remote_device.py:88 in private method `rank`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/distributed/remote_device.py:95 in private method `device`:
        D200: One-line docstring should fit on one line with quotes (found 3)
torch/distributed/remote_device.py:95 in private method `device`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
7
torch/distributed/remote_device.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/remote_device.py:85 in private method `rank`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/remote_device.py:85 in private method `rank`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
3

torch/distributed/rendezvous.py
torch/distributed/rendezvous.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/rendezvous.py:23 in public function `register_rendezvous_handler`:
        D401: First line should be in imperative mood (perhaps 'Register', not 'Registers')
torch/distributed/rendezvous.py:88 in public function `rendezvous`:
        D103: Missing docstring in public function
torch/distributed/rendezvous.py:147 in private function `_create_c10d_store`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/rendezvous.py:147 in private function `_create_c10d_store`:
        D400: First line should end with a period (not 'r')
5
torch/distributed/rendezvous.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/rendezvous.py:89 in public function `rendezvous`:
        D103: Missing docstring in public function
2

torch/distributed/run.py
torch/distributed/run.py:9 at module level:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/run.py:9 at module level:
        D400: First line should end with a period (not '`')
torch/distributed/run.py:393 in public function `get_args_parser`:
        D202: No blank lines allowed after function docstring (found 1)
torch/distributed/run.py:393 in public function `get_args_parser`:
        D401: First line should be in imperative mood; try rephrasing (found 'Helper')
torch/distributed/run.py:610 in public function `parse_args`:
        D103: Missing docstring in public function
torch/distributed/run.py:615 in public function `parse_min_max_nnodes`:
        D103: Missing docstring in public function
torch/distributed/run.py:629 in public function `determine_local_world_size`:
        D103: Missing docstring in public function
torch/distributed/run.py:670 in public function `get_rdzv_endpoint`:
        D103: Missing docstring in public function
torch/distributed/run.py:677 in public function `get_use_env`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/run.py:677 in public function `get_use_env`:
        D401: First line should be in imperative mood (perhaps 'Retrieve', not 'Retrieves')
torch/distributed/run.py:689 in public function `config_from_args`:
        D103: Missing docstring in public function
torch/distributed/run.py:770 in public function `run_script_path`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/run.py:770 in public function `run_script_path`:
        D401: First line should be in imperative mood (perhaps 'Run', not 'Runs')
torch/distributed/run.py:781 in public function `run`:
        D103: Missing docstring in public function
torch/distributed/run.py:804 in public function `main`:
        D103: Missing docstring in public function
15
torch/distributed/run.py:611 in public function `parse_args`:
        D103: Missing docstring in public function
torch/distributed/run.py:616 in public function `parse_min_max_nnodes`:
        D103: Missing docstring in public function
torch/distributed/run.py:630 in public function `determine_local_world_size`:
        D103: Missing docstring in public function
torch/distributed/run.py:671 in public function `get_rdzv_endpoint`:
        D103: Missing docstring in public function
torch/distributed/run.py:691 in public function `config_from_args`:
        D103: Missing docstring in public function
torch/distributed/run.py:784 in public function `run`:
        D103: Missing docstring in public function
torch/distributed/run.py:807 in public function `main`:
        D103: Missing docstring in public function
7

torch/distributed/__init__.py
torch/distributed/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/distributed/__init__.py:8 in public function `is_available`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/__init__.py:8 in public function `is_available`:
        D400: First line should end with a period (not ',')
torch/distributed/__init__.py:8 in public function `is_available`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
4
torch/distributed/__init__.py:1 at module level:
        D104: Missing docstring in public package
1

torch/distributed/utils.py:1 at module level:
        D100: Missing docstring in public module
torch/distributed/utils.py:16 in private function `_pack_kwargs`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/utils.py:16 in private function `_pack_kwargs`:
        D400: First line should end with a period (not ')')
torch/distributed/utils.py:47 in private function `_cast_forward_inputs`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/utils.py:88 in private function `_recursive_to`:
        D200: One-line docstring should fit on one line with quotes (found 3)
torch/distributed/utils.py:141 in private function `_p_assert`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/utils.py:141 in private function `_p_assert`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/distributed/utils.py:141 in private function `_p_assert`:
        D400: First line should end with a period (not 't')
torch/distributed/utils.py:141 in private function `_p_assert`:
        D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/distributed/utils.py:275 in private function `_sync_module_states`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/utils.py:275 in private function `_sync_module_states`:
        D400: First line should end with a period (not 'n')
torch/distributed/utils.py:275 in private function `_sync_module_states`:
        D401: First line should be in imperative mood (perhaps 'Sync', not 'Syncs')
torch/distributed/utils.py:300 in private function `_sync_params_and_buffers`:
        D205: 1 blank line required between summary line and description (found 0)
torch/distributed/utils.py:300 in private function `_sync_params_and_buffers`:
        D400: First line should end with a period (not 'y')
torch/distributed/utils.py:300 in private function `_sync_params_and_buffers`:
        D401: First line should be in imperative mood (perhaps 'Synchronize', not 'Synchronizes')
15
torch/distributed/utils.py:1 at module level:
        D100: Missing docstring in public module
1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112953
Approved by: https://github.com/weifengpy
2023-11-08 01:13:09 +00:00
Kurman Karabukaev
bae8506589 [TorchElastic] Add option to configure log prefix for each rank (#112357)
Summary:
Add an ability to customize log lines and addtional template like behavior to enrich log information.

Motivation:
a) Log stream processing/aggregation gains additional value when it includes information about the global rank. Extension to that is that it will be easier to map ranks to hosts from log stream information (less relevant at the moment)
b) Users can easily map the failure to the right rank without matching node rank offset+local rank.

Implementation
- BC change - keeps the logs line prefix as `[<role name><local rank>]:`
- Optional env variable TORCHELASTIC_LOG_LINE_HEADER that will be used as a prefix when specified and currently exposes `role_name`, `rank` and `local_rank` variables that will be bound when agent assigns the ranks.

Test Plan:
CI

https://fburl.com/mlhub/mzx5xspv

Differential Revision: D50584590

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112357
Approved by: https://github.com/kiukchung
2023-11-08 01:00:26 +00:00
Kunal Bhalla
af229ecd34 [RFC] Change --standalone to bind to a random port (#107734)
Given standalone generates args anyways, it seems like it would be more convenient if it explicitly used a random port by default instead of trying to use 29400.

That way users can directly go with `--standalone` instead of having to spell out `--rdzv-backend=c10d --rdzv-endpoint=localhost:0`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107734
Approved by: https://github.com/H-Huang
2023-08-25 22:13:44 +00:00
shibo19
0af3203c72 fix torchrun script for custom device (#105443)
Fixes #ISSUE_NUMBER
as the title,add torchrun support for custom device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105443
Approved by: https://github.com/kumpera
2023-07-31 05:46:23 +00:00
Edward Z. Yang
5a7aad9681 Convert logging f-strings to use % format, part four (#98705)
This does multi-line concatenated string literals.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98705
Approved by: https://github.com/voznesenskym
2023-04-11 13:17:59 +00:00
Edward Z. Yang
9a8f71f23e Convert logging f-strings to use % format (#98697)
Codemod done with
https://gist.github.com/ezyang/2e8b0463cdc6be278478495b23ff0530 with
assistance from ChatGPT.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98697
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00
Kazuaki Ishizaki
6514d71add Fix typos under torch/distributed directory (#98225)
This PR fixes typos in comments and messages of `.py` files under `torch/distributed` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98225
Approved by: https://github.com/soulitzer, https://github.com/kit1980
2023-04-05 00:21:33 +00:00
Kazuaki Ishizaki
35fd5c548e Fix typos under torch/distributed directory (#95638)
This PR fixes typos in comments and messages of `.py` files under torch/distributed directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95638
Approved by: https://github.com/usamah1, https://github.com/H-Huang, https://github.com/kit1980
2023-03-27 21:13:44 +00:00
Jeffrey Dunn
d779dadda1 Remove stack trace captures from import (#97274)
Summary:
Calls to this function without an argument will get a stack trace at
import time. This is expensive, we can just skip it by passing in a value.

Test Plan: Wait for tests

Differential Revision: D44244345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97274
Approved by: https://github.com/kiukchung
2023-03-22 18:34:13 +00:00
Xuehai Pan
a229b4526f [BE] Prefer dash over underscore in command-line options (#94505)
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.

Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:

`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)

```python
class BooleanOptionalAction(Action):
    def __init__(...):
            if option_string.startswith('--'):
                option_string = '--no-' + option_string[2:]
                _option_strings.append(option_string)
```

It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-09 20:16:49 +00:00
Chris Zheng
5d37890b8e Update torchrun and TorchElastic to take optional local_addr param to allow skip local IP lookup if specified (#88922)
Summary:
Update dynamic renderzvous nodes to use rendezvous hostname if provided.
For PR: https://github.com/pytorch/pytorch/issues/85300

Before:
For dynamic renderzvous, it always grab the `fqdn` from socket for each node even if user specified the address.
For example,
https://github.com/pytorch/pytorch/blob/master/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py#L248-L256
```
return _NodeDesc(socket.getfqdn(), os.getpid(), local_id)
```

Now:
If user specifies the hostname, each node will respect the given hostname.
For example, `socket.getfqdn(<hostname>) `

Test Plan: Unit tests.

Differential Revision: D41204028

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88922
Approved by: https://github.com/d4l3k
2022-12-21 03:55:01 +00:00