Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13603
P
Moved vectorized CPU copy to aten. Notable changes mainly in _copy_same_type_.
Reviewed By: ezyang
Differential Revision: D12936031
fbshipit-source-id: 00d28813e3160595e73d104f76685e13154971c1
Summary:
Multi-dimensional `sum` is already implemented, and it's trivial to implement `mean` in terms of `sum`, so just do it.
Bonus: Fix incomplete language in the `torch.sum` documentation which doesn't take into account multiple dimensions when describing `unsqueeze` (at the same time as introducing similar language in `torch.mean`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14252
Differential Revision: D13161157
Pulled By: umanwizard
fbshipit-source-id: c45da692ba83c0ec80815200c5543302128da75c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/14344 and https://github.com/pytorch/pytorch/issues/6863
The slowdown was due to the fact that we were only summarizing the tensor (for computing the number of digits to print) if its first dimension was larger than the threshold. It now goes over all the dimensions.
Some quick runtime analysis:
Before this PR:
```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)
In [2]: %timeit str(a)
13.6 s ± 84.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```
After this PR
```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)
In [2]: %timeit str(a)
2.08 ms ± 395 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [3]: b = a.cuda()
In [4]: %timeit str(b)
8.39 ms ± 45.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14418
Reviewed By: weiyangfb
Differential Revision: D13226950
Pulled By: soumith
fbshipit-source-id: 19eb4b855db4c8f891d0925a9c56ae8a2824bb23
Summary:
They didn't turn up in my tests because I use pytest which doesn't
print debug statements if the tests pass
Differential Revision: D13115227
Pulled By: soumith
fbshipit-source-id: 46a7d47da7412d6b071158a23ab21e7fb0c6e11b
Summary:
Implements batching for the Cholesky decomposition.
Performance could be improved with a dedicated batched `tril` and `triu` op, which is also impeding autograd operations.
Changes made:
- batching code
- tests in `test_torch.py`, `test_cuda.py` and `test_autograd.py`.
- doc string modification
- autograd modification
- removal of `_batch_potrf` in `MultivariateNormal`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14017
Differential Revision: D13087945
Pulled By: ezyang
fbshipit-source-id: 2386db887140295475ffc247742d5e9562a42f6e
Summary:
This enables the distributions and utils test sets for ROCm.
Individual tests are enabled that now pass due to fixes in HIP/HCC/libraries versions in white rabbit.
For attention: bddppq ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13166
Differential Revision: D12814759
Pulled By: bddppq
fbshipit-source-id: ea70e775c707d7a8d2776fede6154a755adef43e
Summary:
- This is a straightforward PR, building up on the batch inverse PR, except for one change:
- The GENERATE_LINALG_HELPER_n_ARGS macro has been removed, since it is not very general and the resulting code is actually not very copy-pasty.
Billing of changes:
- Add batching for `potrs`
- Add relevant tests
- Modify doc string
Minor changes:
- Remove `_gesv_single`, `_getri_single` from `aten_interned_strings.h`.
- Add test for CUDA `potrs` (2D Tensor op)
- Move the batched shape checking to `LinearAlgebraUtils.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13453
Reviewed By: soumith
Differential Revision: D12942039
Pulled By: zou3519
fbshipit-source-id: 1b8007f00218e61593fc415865b51c1dac0b6a35
Summary:
update roll to behave as in numpy.roll when dimension to roll not specified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13588
Differential Revision: D12964295
Pulled By: nairbv
fbshipit-source-id: de9cdea1a937773033f081f8c1505a40e4e08bc1
Summary:
- a walk around for #13292, a complete fix requires investigation on the root cause when using advanced indexing
- this PR brings in `filp()` CUDA implementation for CPU kernel
- with this change:
```
>>> t = torch.randn(1, 3, 4, 5)
>> t.flip(1, 3).shape
torch.Size([1, 3, 4, 5])
```
- performance:
```
====== with this PR ======
>>> a = torch.randn(1000, 1000)
>>> %timeit -r 100 a.flip(0, 1)
1.98 ms ± 579 µs per loop (mean ± std. dev. of 100 runs, 1000 loops each)
====== Perf at previous PR #7873 ======
100 loops, best of 3: 11 ms per loop
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13344
Differential Revision: D12968003
Pulled By: weiyangfb
fbshipit-source-id: 66f434049d143a0575a35b5c983b3e0577a1a28d
Summary:
- fixes weights-contiguous requirement for THCUNN Convolutions
- Add tests that conv backward pass works for non-contiguous weights
- fix RNN tests / error messages to be consistent and pass
- relax weight grad precision for fp16 for a particular test
- fix regression of CMAKE_PREFIX_PATH not passing through
- add missing skipIfNoLapack annotations where needed
Differential Revision: D12918456
Pulled By: soumith
fbshipit-source-id: 8642d36bffcc6f2957800d6afa1e10bef2a91d05
Summary:
Fixes#13326
Also now you can use `run_test.py` with `pytest`. E.g.,
```
python run_test.py -vci distributed -pt
```
Yes it works with `distributed` and `cpp_extension`.
cc zou3519 vishwakftw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13416
Differential Revision: D12895622
Pulled By: SsnL
fbshipit-source-id: 2d18106f3a118d642a666bfb1318f41c859c3df7
Summary:
This PR performs a renaming of the function `potrf` responsible for the Cholesky
decomposition on positive definite matrices to `cholesky` as NumPy and TF do.
Billing of changes
- make potrf cname for cholesky in Declarations.cwrap
- modify the function names in ATen/core
- modify the function names in Python frontend
- issue warnings when potrf is called to notify users of the change
Reviewed By: soumith
Differential Revision: D10528361
Pulled By: zou3519
fbshipit-source-id: 19d9bcf8ffb38def698ae5acf30743884dda0d88
Summary:
Currently, `a = 1 - torch.tensor([1]).to('cuda:1')` puts `a` in `cuda:1` but reports `a.device` as `cuda:0` which is incorrect, and it causes illegal memory access error when trying to access `a`'s memory (e.g. when printing). This PR fixes the error.
Fixes https://github.com/pytorch/pytorch/issues/10850.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12956
Differential Revision: D12835992
Pulled By: yf225
fbshipit-source-id: 5737703d2012b14fd00a71dafeedebd8230a0b04
Summary:
ezyang on the template hack
smessmer on SFINAE of the `TensorOptions(Device)`
goldsborough on the C++ API test changes
zdevito on the `jit` codegen changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13146
Reviewed By: ezyang
Differential Revision: D12823809
Pulled By: SsnL
fbshipit-source-id: 98d65c401c98fda1c6fa358e4538f86c6495abdc
Summary:
1. Refactors `TestTorch` into `TestTorchMixin` (subclass of `object`) and `TestTorch` (subclass of `TestCase`, MRO `(TestCase, TestTorchMixin)`, only defined if `__name__ == '__main__'`). So other scripts won't accidentally run it.
2. Adds an assertion in `load_tests` that each script only runs cases defined in itself.
cc yf225 ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13250
Differential Revision: D12823734
Pulled By: SsnL
fbshipit-source-id: 7a169f35fe0794ce76e310d8a137d9a3265c012b
Summary:
Fixes#12578#9395.
* Fix and simplify print logic
* Follow numpy print rule eb2bd11870/numpy/core/arrayprint.py (L859)
> scientific notation is used when absolute value of the smallest number is < 1e-4 or maximum > 1e8 or the ratio of the maximum absolute value to the minimum is > 1e3
I hope I didn't break anything since there seems to be a lot of edge cases here... Here are some easy sanity checks.
```
In [5]: torch.tensor(1)
Out[5]: tensor(1)
Out[2]: array(1) # numpy
In [6]: torch.tensor(10)
Out[6]: tensor(10)
Out[3]: array(10) # numpy
In [8]: torch.tensor(99000000)
Out[8]: tensor(99000000)
Out[5]: array(99000000) # numpy
In [9]: torch.tensor(100000000)
Out[9]: tensor(100000000)
Out[6]: array(100000000) # numpy
In [10]: torch.tensor(100000001)
Out[10]: tensor(100000001)
Out[7]: array(100000001) # numpy
In [11]: torch.tensor(1000000000)
Out[11]: tensor(1000000000)
Out[8]: array(1000000000) # numpy
In [12]: torch.tensor([1, 1000])
Out[12]: tensor([ 1, 1000])
Out[9]: array([ 1, 1000]) # numpy
In [13]: torch.tensor([1, 1010])
Out[13]: tensor([ 1, 1010])
Out[10]: array([ 1, 1010]) # numpy
```
For floating points, we use scientific when `max/min > 1000 || max > 1e8 || min < 1e-4`
Lines with "old" are old behaviors that either has precision issue, or not aligned with numpy
```
In [14]: torch.tensor(0.01)
Out[14]: tensor(0.0100)
Out[11]: array(0.01) # numpy
In [15]: torch.tensor(0.1)
Out[15]: tensor(0.1000)
Out[12]: array(0.1) # numpy
In [16]: torch.tensor(0.0001)
Out[16]: tensor(0.0001)
Out[14]: array(0.0001) # numpy
In [17]: torch.tensor(0.00002)
Out[17]: tensor(2.0000e-05)
Out[15]: array(2e-05) # numpy
Out[5]: tensor(0.0000) # old
In [18]: torch.tensor(1e8)
Out[18]: tensor(100000000.)
Out[16]: array(100000000.0) # numpy
In [19]: torch.tensor(1.1e8)
Out[19]: tensor(1.1000e+08)
Out[17]: array(1.1e8) # numpy 1.14.5, In <= 1.13 this was not using scientific print
Out[10]: tensor(110000000.) # old
In [20]: torch.tensor([0.01, 10.])
Out[20]: tensor([ 0.0100, 10.0000])
Out[18]: array([ 0.01, 10. ]) # numpy
In [21]: torch.tensor([0.01, 11.])
Out[21]: tensor([1.0000e-02, 1.1000e+01])
Out[19]: array([ 1.00000000e-02, 1.10000000e+01]) # numpy
Out[7]: tensor([ 0.0100, 11.0000]) # old
```
When print floating number in int mode, we still need to respect rules to use scientific mode first
```
In [22]: torch.tensor([1., 1000.])
Out[22]: tensor([ 1., 1000.])
Out[20]: array([ 1., 1000.]) # numpy
In [23]: torch.tensor([1., 1010.])
Out[23]: tensor([1.0000e+00, 1.0100e+03])
Out[21]: array([ 1.00000000e+00, 1.01000000e+03]) # numpy
Out[9]: tensor([ 1., 1010.]) # old
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12746
Differential Revision: D10443800
Pulled By: ailzhang
fbshipit-source-id: f5e4e3fe9bf0b44af2c64c93a9ed42b73fa613f5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12794
common.py is used in base_module for almost all tests in test/. The
name of this file is so common that can easily conflict with other dependencies
if they happen to have another common.py in the base module. Rename the file to
avoid conflict.
Reviewed By: orionr
Differential Revision: D10438204
fbshipit-source-id: 6a996c14980722330be0a9fd3a54c20af4b3d380
Summary:
I found a bug in norm() and fixed it (and added tests to make sure it's fixed)
here is how to reproduce it:
```python
import torch
x = torch.FloatTensor([[10, 12, 13], [4, 0, 12]])
print(torch.norm(x, -40, dim=0, keepdim=True)) #output is tensor([[ 4.0000, 0.0000, 11.9853]])
print(torch.norm(x, float('-inf'), dim=0, keepdim=True)) #output is tensor([[1., 1., 1.]]) which is wrong!
from numpy.linalg import norm as np_norm
x = x.numpy()
print(np_norm(x, ord=-40, axis=0)) #output is array([[4., 0., 11.985261]])
print(np_norm(x, ord=float('-inf'), axis=0)) #output is array([[4., 0., 12.0]])
```
it's related to [#6817](https://github.com/pytorch/pytorch/issues/6817) and [#6969](https://github.com/pytorch/pytorch/pull/6969)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12722
Differential Revision: D10427687
Pulled By: soumith
fbshipit-source-id: 936a7491d1e2625410513ee9c39f8c910e8e6803
Summary:
`torch.isfinite()` used to crash on int inputs.
```
>>> import torch
>>> a = torch.tensor([1, 2])
>>> torch.isfinite(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/scratch/pytorch/torch/functional.py", line 262, in isfinite
return (tensor == tensor) & (tensor.abs() != inf)
RuntimeError: value cannot be converted to type int64_t without overflow: inf
```
But this is a easy special case and numpy also supports it.
```
>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.dtype
dtype('int64')
>>> np.isfinite(a)
array([ True, True], dtype=bool)
```
So added a hacky line to handle non-floating-point input. Since pytorch raises exception when overflow, we can safely assume all valid int tensors are infinite numbers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12750
Differential Revision: D10428204
Pulled By: ailzhang
fbshipit-source-id: f39b2d0975762c91cdea23c766ff1e21d85d57a5
Summary:
The mapping protocol stipulates that when `__delitem__` is called, this is passed to `__setitem__` [(well, the same function in the C extension interface)](https://docs.python.org/3/c-api/typeobj.html#c.PyMappingMethods.mp_ass_subscript) with NULL data.
PyTorch master crashes in this situation, with this patch, it does not anymore.
Test code (careful, sefaults your interpreter):
```python
import torch
a = torch.randn(5)
del a[2]
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12726
Differential Revision: D10414244
Pulled By: colesbury
fbshipit-source-id: c49716e1a0a3d9a117ce88fc394858f1df36ed79
Summary:
- This was one of the few functions left out from the list of functions in
NumPy's `linalg` module
- `multi_mm` is particularly useful for DL research, for quick analysis of
deep linear networks
- Added tests and doc string
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12380
Differential Revision: D10357136
Pulled By: SsnL
fbshipit-source-id: 52b44fa18d6409bdeb76cbbb164fe4e88224458e
Summary:
* switches docker files over to white rabbit release - removed custom package installs
* skips five tests that regressed in that release
* fixes some case-sensitivity issues in ROCm supplied cmake files by sed'ing them in the docker
* includes first changes to the infrastructure to support upcoming hip-clang compiler
* prints ROCm library versions as part of the build (as discussed w/ ezyang )
* explicitly searches for miopengemm
* installs the new hip-thrust package to be able to remove the explicit Thrust checkout in a future revision
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12577
Differential Revision: D10350165
Pulled By: bddppq
fbshipit-source-id: 60f9c9caf04a48cfa90f4c37e242d944a175ab31
Summary:
Fixes#12260#2896
```
torch.multinomial(torch.FloatTensor([0, 1, 0, 0]), 3, replacement=False)
```
The old behavior is that we return `0` after we run out of postive categories. Now we raise an error based on discussion in the issue thread.
- Add testcase for cpu & cuda case, in cuda case `n_samples=1` is a simple special case, so we test against `n_sample=2` instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12490
Differential Revision: D10278794
Pulled By: ailzhang
fbshipit-source-id: d04de7a60f60d0c0d648b975db3f3961fcf42db1
Summary:
* Topk part 1: fix intrinsincs for 64 wave front (#224)
64 in a wave front - intrinsics change.
* Disable in-place sorting on ROCm. (#237)
It is known to hang - use the Thrust fallback
Skip one test - fails with the fallback.
* Topk fixes (#239)
* Spec (https://docs.nvidia.com/cuda/pdf/ptx_isa_6.3.pdf) Sec 9.7.1.19 (bfe) and 9.7.1.20 (bfi) requires pos and len to be limited to 0...255
* Spec (https://docs.nvidia.com/cuda/pdf/ptx_isa_6.3.pdf) Sec 9.7.1.19 requires extracted bits to be in LSBs
* Correct logic for getLaneMaskLe. Previous logic would return 0x0 instead of 0xffffffffffffffff for lane 63
* Round up blockDim.x to prevent negative index for smem
bddppq ezyang
Note the one additional skipped test resulting from using the thrust sort fallback for all sizes. We are working on getting bitonic to work properly (and always). Until then, this needs to be skipped on ROCm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12337
Differential Revision: D10259481
Pulled By: ezyang
fbshipit-source-id: 5c8dc6596d7a3103ba7b4b550cba895f38c8148e
Summary:
- fixes https://github.com/pytorch/pytorch/issues/10723
- migrate PReLU to ATen and deprecate legacy PReLU
- performance:
CPU with weight.numel() = 1
```
>>> m = nn.PReLU()
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
100 loops, best of 100: 9.43 ms per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
10 loops, best of 100: 24.4 ms per loop
>>> m = nn.PReLU()
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 695 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 2.47 ms per loop
```
CPU with weight.numel() = channels
```
>>> m = nn.PReLU(100)
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 603 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 13.3 ms per loop
>>> m = nn.PReLU(100)
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 655 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 2.45 ms per loop
```
CUDA with weight.numel() = 1
```
>>> m = nn.PReLU().cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
10000 loops, best of 100: 187 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.01 ms per loop
>>> m = nn.PReLU().cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
1000 loops, best of 100: 195 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.28 ms per loop
```
CUDA with weight.numel() = channel
```
>>> m = nn.PReLU(100).cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
1000 loops, best of 100: 174 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.27 ms per loop
>>> m = nn.PReLU(100).cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
10000 loops, best of 100: 181 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.26 ms per loop
```
The huge performance regression in CPU when weight.numel() = 1 is addressed by replacing at::CPU_tensor_apply* with parallelized kernels.
ezyang SsnL zou3519 soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11758
Differential Revision: D9995799
Pulled By: weiyangfb
fbshipit-source-id: d289937c78075f46a54dafbde92fab0cc4b5b86e
Summary:
- fix PR https://github.com/pytorch/pytorch/pull/11061 by moving `detach_()` and `set_requires_grad()` to `torch.tensor_ctor()` and `tensor.new_tensor`, and also removed warnings and `args_requires_grad` from `internal_new_from_data `
- with this patch, the returned tensor from `tensor_ctor()` and `new_tensor` will be detached from source tensor, and set requires_grad based on the input args
- `torch.as_tensor` retains its behavior as documented
gchanan apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11815
Differential Revision: D9932713
Pulled By: weiyangfb
fbshipit-source-id: 4290cbc57bd449954faadc597c24169a7b2d8259
Summary:
+ https://github.com/pytorch/pytorch/issues/10236 : torch.bernoulli's out kwarg is broken
fixed in moving `bernoulli_out` to ATen
+ https://github.com/pytorch/pytorch/issues/9917 : BUG torch.bernoulli(p.expand(shape)) is broken
fixed in moving all `bernoulli` ops in ATen to use the modern apply utils methods
+ https://github.com/pytorch/pytorch/issues/10357 : torch.bernoulli inconsistent gpu/cpu results
fixed by adding CUDA asserts
In order to use `curand_uniform4`, I made some changes to `CUDAApplyUtils.cuh`. Specifically, I introduced an optional template parameter `int step` to the `CUDA_tensor_applyN` methods, representing that we want to process `step` values at each time for each of the `N` tensors.
The calling convention for `step = 1` (default) isn't changed. But if `step > 1`, the given lambda `op` must take in `int n` as its first argument, representing the number of valid values, because there may not be full `step` values at the boundary. E.g., here is what the `bernoulli(self, p_tensor)` call look like:
```cpp
// The template argument `4` below indicates that we want to operate on four
// element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
at::cuda::CUDA_tensor_apply2<scalar_t, prob_t, 4>(
ret, p,
[seeds] __device__(
int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4,
const prob_t& p1, const prob_t& p2, const prob_t& p3, const prob_t& p4) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
float4 rand = curand_uniform4(&state);
switch (n) {
case 4: {
assert(0 <= p4 && p4 <= 1);
v4 = static_cast<scalar_t>(rand.w <= p4);
}
case 3: {
assert(0 <= p3 && p3 <= 1);
v3 = static_cast<scalar_t>(rand.z <= p3);
}
case 2: {
assert(0 <= p2 && p2 <= 1);
v2 = static_cast<scalar_t>(rand.y <= p2);
}
case 1: {
assert(0 <= p1 && p1 <= 1);
v1 = static_cast<scalar_t>(rand.x <= p1);
}
}
}
);
```
Benchmarking on `torch.rand(200, 300, 400)` 20 times, each time with 20 loops:
post patch
```
➜ ~ numactl --cpunodebind 1 --membind 1 -- taskset -c 12,13,14,15,16,17,18,19,20,21,22,23 env CUDA_LAUNCH_BLOCKING=1 python bern.py
torch.bernoulli(x)
6.841588497161865 +- 0.05413117632269859
torch.bernoulli(xc)
0.05963418632745743 +- 0.0008014909108169377
x.bernoulli_()
0.4024486541748047 +- 0.0021550932433456182
xc.bernoulli_()
0.02167394384741783 +- 2.3818030967959203e-05
```
pre-patch
```
➜ ~ numactl --cpunodebind 1 --membind 1 -- taskset -c 12,13,14,15,16,17,18,19,20,21,22,23 env CUDA_LAUNCH_BLOCKING=1 python bern.py
torch.bernoulli(x)
12.394511222839355 +- 0.0966421514749527
torch.bernoulli(xc)
0.08970972150564194 +- 0.0038722590543329716
x.bernoulli_()
1.654480218887329 +- 0.02364428900182247
xc.bernoulli_()
0.058352887630462646 +- 0.003094920190051198
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10273
Differential Revision: D9831294
Pulled By: SsnL
fbshipit-source-id: 65e0655a36b90d5278b675d35cb5327751604088
Summary:
Adds vararg support for meshgrid and adds checks for all the tensor arguments to have the same dtype and device.
Fixes: [#10823](https://github.com/pytorch/pytorch/issues/10823), #11446
The earlier pull request closed without any changes because I had some rebasing issues, so I made another pull request to close out #10823. Sorry for the inconvenience.
Differential Revision: D9892876
Pulled By: ezyang
fbshipit-source-id: 93d96cafc876102ccbad3ca2cc3d81cb4c9bf556
Summary:
tset_potri -> test_potri, even though it has been like this for a long time
More a curiosity than grave functionality...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11770
Reviewed By: ezyang
Differential Revision: D9884767
Pulled By: soumith
fbshipit-source-id: 9bedde2e94ade281ab1ecc2293ca3cb1a0107387