Commit Graph

10 Commits

Author SHA1 Message Date
Richard Barnes
041b4431b2 irange for size_t (#55163)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27448156

fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
2021-04-02 23:22:29 -07:00
Thomas Viehmann
86861095fa Graceful invalidation of Python Node/Value/Block when C++ object is deleted (#50326)
Summary:
Previously we might have gotten segfaults and all, now it raises an exception.
Thread safety hasn't been an objective.

I have a followup to expand the Python interface for the API.

Fixes https://github.com/pytorch/pytorch/issues/49969.

wanchaol

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50326

Reviewed By: pbelevich

Differential Revision: D26096234

Pulled By: gmagogsfm

fbshipit-source-id: 5425772002eb4deb3830ed51eaa3964f22505840
2021-02-04 01:34:46 -08:00
anjali411
18a7ec7d7d Update the JIT complex type name to be consistent with Python (#51476)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51476

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D26179237

Pulled By: anjali411

fbshipit-source-id: 6a5c60c8545eb42416583836b8038ceffd3f3244
2021-02-03 09:59:08 -08:00
Meghan Lele
751c30038f [JIT] Properly convert Python strings implictly to device (#51340)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51340

**Summary**
`toIValue` assumes that any value passed for an argument of type
`torch.device` is a valid device object, even when it is not. This can
lead to device type arguments of functions being assigned incorrect
values (see #51098).

This commit adds an explicit check that the passed in object is indeed a
`torch.device` using `THPDevice_Check` and only then does is it
converted to an `IValue`. Since implicit conversion from strings to
devices is generally allowed, if `THPDevice_Check` fails, it is assumed
that the object is a string and an `IValue` containing a `c10::Device`
containing the passed in string is returned.

**Test Plan**
This commit adds a unit test to `test_jit.py` to test that invalid
strings passed as devices are not longer silently accepted.

**Fixes**
This commit fixes #51098.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26187190

Pulled By: SplitInfinity

fbshipit-source-id: 48c990203431da30f9f09381cbec8218d763325b
2021-02-02 10:57:56 -08:00
Anjali Chourdia
b6eaca9f1f Add type annotation logic for complex numbers (#50884)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50884

Test Plan: Imported from OSS

Reviewed By: heitorschueroff

Differential Revision: D26086963

fbshipit-source-id: f103f7f529d63d701c4f17862e30eafbab7d0c68
2021-01-26 19:39:35 -08:00
generatedunixname89002005325676
5a5bca8ef0 [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D26043955

fbshipit-source-id: 0a5740a82bdd3ac7bd1665a325ff7fe79488ccea
2021-01-25 04:20:03 -08:00
anjali411
9ac30d96aa Add complex IValues (#50883)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50883

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D26003682

Pulled By: anjali411

fbshipit-source-id: f02967d2d236d740cd8647891f732f1d63098d3e
2021-01-22 09:44:40 -08:00
Scott Wolchok
4a0d17ba2d [PyTorch][codemod] Replace immediately-dereferenced expect calls w/expectRef (#50228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50228

`fastmod -m 'expect(<((at|c10)::)?\w+Type>\(\)\s*)->'
'expectRef${1}.'`
Presuming it builds, this is a safe change: the result of `expect()`
wasn't being saved anywhere, so we didn't need it, so we can take a
reference instead of a new `shared_ptr`.
ghstack-source-id: 119782961

Test Plan: CI

Reviewed By: SplitInfinity

Differential Revision: D25837374

fbshipit-source-id: 86757b70b1520e3dbaa141001e7976400cdd3b08
2021-01-13 16:13:55 -08:00
Meghan Lele
4d3c12d37c [JIT] Print better error when class attribute IValue conversion fails (#50255)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50255

**Summary**
TorchScript classes are copied attribute-by-attribute from a py::object into
a `jit::Object` in `toIValue`, which is called when copying objects from
Python into TorchScript. However, if an attribute of the class cannot be
converted, the error thrown is a standard pybind error that is hard to
act on.

This commit adds code to `toIValue` to convert each attribute to an
`IValue` inside a try-catch block, throwing a `cast_error` containing
the name of the attribute and the target type if the conversion fails.

**Test Plan**
This commit adds a unit test to `test_class_type.py`
based on the code in the issue that commit fixes.

**Fixes**
This commit fixes #46341.

Test Plan: Imported from OSS

Reviewed By: pbelevich, tugsbayasgalan

Differential Revision: D25854183

Pulled By: SplitInfinity

fbshipit-source-id: 69d6e49cce9144af4236b8639d8010a20b7030c0
2021-01-11 14:04:26 -08:00
Luca Wehrstedt
1ac05cfe01 Remove DataPtr extractor from CUDAFuture (#48840)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48840

The CUDAFuture class needs to inspect the values it contains in order to extract its tensors (in fact, the DataPtrs backing those). These are needed first to determine what CUDA devices back those tensors, so that an event for each such device can be recorded; and later to record these DataPtrs with the CUDA caching allocator if they are used in other streams.

This became complicated when Python was added to the mix, because to inspect a Python object we need to acquire the GIL, but we couldn't do so from code that was supposed to also work in C++-only mode. The solution was for users to provide a custom way to extract DataPtrs, so that the PythonFutureWrapper could install such a custom Python-aware one. This was the DataPtr extractor.

In https://github.com/pytorch/pytorch/pull/48502 a different suggestion was proposed. At its root, it consists in adding support for IValues of type PyObject to the visit() and getSubValues() methods. In order to deal with the GIL, we do this through a virtual method: PyObjectHolder, which is the base class, is available also in C++-only mode, and thus defines this method but leaves it unimplemented; ConcretePyObjectHolder, which is the subclass, is only included in Python mode, and thus it can implement that method, acquire the GIL, and do what it's supposed to.

In my opinion, this approach is just brilliant! Thank wanchaol for proposing it! It hides the complexity of dealing with Python inside getSubValues(), where it can be done properly, thus simplifying enormously the CUDAFuture and the PythonFutureWrapper classes.
ghstack-source-id: 118704935

Test Plan: Unit tests

Reviewed By: wanchaol

Differential Revision: D25334355

fbshipit-source-id: 3f1d3bf6e6e8505a114c877fb9a6fcc3f68d91d3
2020-12-19 11:03:45 -08:00