Before the pr, we have a graph break for `callable(nn_module)`:
```python
class M(nn.Module):
def forward(self, x):
return x.sin()
def f(m):
return callable(m)
res = torch.compile(f, fullgraph=True)(M())
```
```
Traceback (most recent call last):
File "/data/users/yidi/pytorch/t.py", line 17, in <module>
out = torch.compile(f, backend="eager", fullgraph=True)(M())
File "/data/users/yidi/pytorch/torch/_dynamo/eval_frame.py", line 414, in _fn
return fn(*args, **kwargs)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 1077, in catch_errors
return callback(frame, cache_entry, hooks, frame_state, skip=1)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 456, in _convert_frame_assert
return _compile(
File "/data/users/yidi/pytorch/torch/_utils_internal.py", line 74, in wrapper_function
return function(*args, **kwargs)
File "/home/yidi/.conda/envs/pytorch/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 799, in _compile
guarded_code = compile_inner(code, one_graph, hooks, transform)
File "/data/users/yidi/pytorch/torch/_dynamo/utils.py", line 210, in time_wrapper
r = func(*args, **kwargs)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 618, in compile_inner
out_code = transform_code_object(code, transform)
File "/data/users/yidi/pytorch/torch/_dynamo/bytecode_transformation.py", line 1167, in transform_code_object
transformations(instructions, code_options)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 177, in _fn
return fn(*args, **kwargs)
File "/data/users/yidi/pytorch/torch/_dynamo/convert_frame.py", line 564, in transform
tracer.run()
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 2244, in run
super().run()
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 886, in run
while self.step():
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 801, in step
self.dispatch_table[inst.opcode](self, inst)
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 496, in wrapper
return inner_fn(self, inst)
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 1255, in CALL_FUNCTION
self.call_function(fn, args, {})
File "/data/users/yidi/pytorch/torch/_dynamo/symbolic_convert.py", line 739, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/data/users/yidi/pytorch/torch/_dynamo/variables/builtin.py", line 948, in call_function
return handler(tx, args, kwargs)
File "/data/users/yidi/pytorch/torch/_dynamo/variables/builtin.py", line 711, in <lambda>
return lambda tx, args, kwargs: obj.call_function(
File "/data/users/yidi/pytorch/torch/_dynamo/variables/builtin.py", line 948, in call_function
return handler(tx, args, kwargs)
File "/data/users/yidi/pytorch/torch/_dynamo/variables/builtin.py", line 835, in builtin_dipatch
unimplemented(error_msg)
File "/data/users/yidi/pytorch/torch/_dynamo/exc.py", line 216, in unimplemented
raise Unsupported(msg)
torch._dynamo.exc.Unsupported: builtin: callable [<class 'torch._dynamo.variables.nn_module.NNModuleVariable'>] False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127026
Approved by: https://github.com/jansel
We guard on key order
1) When a key is a non-constant object
2) When we actually need key order - like .values, .items etc
For dicts/OrderedDicts that do not require key order guarding, we just rely on usual `GuardManger + DictGetItemGuardAccessor`. This is faster than going through the `list(d.keys())` based design for OrderedDicts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124779
Approved by: https://github.com/jansel
This removes the duplicate handling of comparison ops between symbolic_convert and bultin and refactors the handling to use the binop infrastructure. This change regresses overheads a bit, but this is fixed in the next PR.
New test skips are variants of `type(e) is np.ndarray` previously falling back to eager.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122043
Approved by: https://github.com/anijain2305
ghstack dependencies: #122039
Reduces the torch.compile(backend="eager") for this code by 1-2 seconds.
~~~
def fn(x):
for _ in range(10000):
# x = torch.sin(x)
x = torch.ops.aten.sin(x)
# x = sin(x)
return x
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121053
Approved by: https://github.com/jansel
Fixes#119198.
This PR make dynamo inline `__iter__` of a user defined object instead of creating a graph break. Also added a new test, which shows:
1. the loop is unrolled
2. the length of the loop is guarded when inlining `__iter__`
```python
class Mod:
def __init__(self):
self.a = [torch.randn(2, 2), torch.randn(2, 2)]
def __iter__(self):
return iter(self.a)
def f(mod):
ret = []
for x in mod:
ret.append(x + 1)
return ret
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119243
Approved by: https://github.com/jansel
Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function.
* ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip.
* ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check.
* I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups.
* Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule.
To avoid a single big PR, I left a few items as the follow-ups:
* Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```.
* We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```.
* Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions.
* The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971
Approved by: https://github.com/jansel
Before the pr, we have a graph break for:
```python
def f():
if torch.cuda.current_stream() is not None:
return torch.randn(2, 2)
torch.compile(f, backend="eager", fullgraph=True)()
```
This pr supports comparson ops of StreamVariable and ConstantVariable by returning a constant.
It's safe to return a constant in this case becuase the StreamVariable is guarded by ID_MATCH when created.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119199
Approved by: https://github.com/yifuwang, https://github.com/anijain2305, https://github.com/jansel
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.
Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
Fixes#117685.
This PR only makes ConstantSource perserved for built-in ops when we find all the inputs are either constant tensors or python constants.
It doesn't fundamentally solve the problem of preserving ConstantSource information through all operators that's potentially can be constant folded.
For the following code in the issue:
```
class Bob(torch.nn.Module):
def __init__(self, p, val) -> None:
super().__init__()
self.p = p
self.y = torch.nn.Parameter(torch.tensor(val))
def forward(self, x: torch.Tensor) -> torch.Tensor:
# This only looks dynamic but it's actually a constant value
if get_y(self.y) < self.p:
return torch.cat([x,x])
else:
return x
```
The graph exported looks like following:
```python
class GraphModule(torch.nn.Module):
def forward(self, x):
arg0: "f32[s0, s1]";
arg0, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
l_x_ = arg0
# File: /home/yidi/local/pytorch/test/dynamo/test_export.py:1498 in forward, code: return torch.cat([x, x])
cat = torch.cat([l_x_, l_x_]); l_x_ = None
return pytree.tree_unflatten([cat], self._out_spec)
```
Test Plan:
Added a new test for the given repro.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117704
Approved by: https://github.com/jansel, https://github.com/anijain2305
* This is an old builtin function equivalent to the bool constructor. it is easy enough to add support for.
* I also realized the tests were in the wrong class (the one reserved for testing default args) so I moved them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117463
Approved by: https://github.com/jansel