Commit Graph

11 Commits

Author SHA1 Message Date
Shangdi Yu
01e9036bd2 skip torchbind in cosntant folding (#148993)
Summary:
Do not fold torchbind objects in constant folding

Any operation on these torchbind objects can have arbitrary side effects, so we can't effectively constant fold anything torchbind-obj-related anyway.

Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile_constant_folding
```

Reviewed By: angelayi

Differential Revision: D69946541

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148993
Approved by: https://github.com/angelayi
2025-03-12 18:08:08 +00:00
Shangdi Yu
cf19efd3d9 Support basic TorchBind in aot_compile and aoti_compile_and_package (#148506)
Summary:
**Codegen**

- Skip some codegen parts for torchbind (such as arg decleration) because they are loaded in proxy executor, so we do not need to declare torchbind args in cpp code
- Added a helper method to get the schema of CallTorchBind HOP. The returned schema is only the schema of `obj.method()`.

**Serialization**
Add support for torchbind object in serialization

- For CallTorchBind HOP, we need to handle it specially because of it's schema. The output serialized args is in the format of `(obj, method, *args, **kwargs)`.
- it.TorchBindObject inputs are serialized to `as_custom_obj` Argument.

**Packaging**

Add torchbind objects file and `custom_objs_config.json` file to generated files output of `aot_compile`.

The json file is stored in the `data/aotinductor/<model_name>` folder in pt2 archive.

The torchbind objects are stored in data/constants/ folder in pt2 archive.
The format of torchbind objects are `f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}"`. e.g. `custom_obj_0`.
CustomClassHolder objects implement their own pickle methods.

Note that this `custom_objs_config.json` file is different from the `model_constants_config.json` file produced in package_sigmoid(). The keys in `custom_objs_config` directly correspond to the arg name in extern nodes json.
The key in `model_constants_config.json` produced by `package_sigmoid` is the attribute name in the user mode code.

This is required for both internal and OSS torchbind support.
For OSS torchbind support, we also need to package torchbind_constants into the .pt2 output.

**Work Left**
We still need to add torchbind support in ProxyExecutor for inductor.aoti_load_package to work. See other diffs in the stack.

Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r schema
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile
```

Differential Revision: D69490718

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148506
Approved by: https://github.com/angelayi
2025-03-11 20:55:18 +00:00
Shangdi Yu
0b0da81021 Support static method of torchbind attributes in torch.compile with inductor backend (#146927)
As title.

Many changes adapted from https://github.com/pytorch/pytorch/pull/129537.

Also this diff is only for *static* method of torchbind *attributes*. Some case that's not supported/tested:
- dynamic torchbind objects
-  torchbind objects as an input to the module.

Note that in JIT Inductor, the attributes are lifted as inputs. So even if we just have torchbind objects as attributes, they will show up as inputs in the graph.

Example generated python code in torch.compile with inductor backend for the test case in `inductor/test_torchbind.py` (P1730554370):

```python
async_compile.wait(globals())
del async_compile

def call(args):
    arg1_1, arg2_1, arg3_1 = args
    args.clear()
    assert_size_stride(arg1_1, (2, 3), (3, 1))
    assert_size_stride(arg2_1, (2, 3), (3, 1))
    buf2 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
    cpp_fused_add_0(arg1_1, arg2_1, buf2)
    del arg1_1
    del arg2_1
    # Topologically Sorted Source Nodes: [x, takes_foo_tuple_return], Original ATen: [aten.add]
    buf3 = torch.ops._TorchScriptTesting.takes_foo_tuple_return.default(arg3_1, buf2)
    buf4 = buf3[0]
    assert_size_stride(buf4, (2, 3), (3, 1))
    buf5 = buf3[1]
    assert_size_stride(buf5, (2, 3), (3, 1))
    buf6 = buf4; del buf4  # reuse
    cpp_fused_add_1(buf6, buf5)
    del buf5
    # Topologically Sorted Source Nodes: [y, b], Original ATen: [aten.add]
    buf7 = torch.ops._TorchScriptTesting.takes_foo.default(arg3_1, buf6)
    del buf3
    del buf6
    buf8 = buf7
    assert_size_stride(buf8, (2, 3), (3, 1))
    # Topologically Sorted Source Nodes: [c], Original ATen: []
    buf9 = torch.ops.higher_order.call_torchbind(arg3_1, 'add_tensor', buf2)
    del arg3_1
    del buf7
    buf10 = buf9
    assert_size_stride(buf10, (2, 3), (3, 1))
    del buf9
    buf11 = buf2; del buf2  # reuse
    cpp_fused_add_2(buf11, buf8, buf10)
    return (buf11, )

def benchmark_compiled_module(times=10, repeat=10):
    from torch._dynamo.testing import rand_strided
    from torch._inductor.utils import print_performance
    arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
    arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
    import pickle
    global arg3_1
    arg3_1 = pickle.loads(b'\x80\x04\x95[\x00\x00\x00\x00\x00\x00\x00\x8c\x05torch\x94\x8c\x0cScriptObject\x94\x93\x94)\x81\x94]\x94(K\nK\x14e\x8c0__torch__.torch.classes._TorchScriptTesting._Foo\x94\x86\x94b.')
    fn = lambda: call([arg1_1, arg2_1, arg3_1])
    return print_performance(fn, times=times, repeat=repeat)

if __name__ == "__main__":
    from torch._inductor.wrapper_benchmark import compiled_module_main
    compiled_module_main('None', benchmark_compiled_module)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146927
Approved by: https://github.com/angelayi
2025-02-20 03:33:19 +00:00
Oguz Ulgen
920f0426ae Add None return type to init -- tests rest (#132376)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132376
Approved by: https://github.com/jamesjwu
ghstack dependencies: #132335, #132351, #132352
2024-08-01 15:44:51 +00:00
Xuehai Pan
134bc4fc34 [BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129763
Approved by: https://github.com/jansel
2024-07-18 07:49:19 +00:00
PyTorch MergeBot
b732b52f1e Revert "[BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)"
This reverts commit aecc746fcc.

Reverted https://github.com/pytorch/pytorch/pull/129763 on behalf of https://github.com/XuehaiPan due to need reland after rerunning lintrunner on main ([comment](https://github.com/pytorch/pytorch/pull/129763#issuecomment-2235736732))
2024-07-18 06:39:58 +00:00
Xuehai Pan
aecc746fcc [BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129763
Approved by: https://github.com/jansel
2024-07-18 05:13:41 +00:00
Yidi Wu
a287ff75d0 Use init_torchbind_implementations in inductor torchbind tests. (#128341)
Summary: To unify how we load the torch bind libraries for testing.

Test Plan: Existing tests.

Differential Revision: D58372372

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128341
Approved by: https://github.com/angelayi
2024-06-10 23:02:48 +00:00
PyTorch MergeBot
4c074a9b8b Revert "[torchbind] always fakify script object by default in non-strict export (#127116)"
This reverts commit c27882ffa8.

Reverted https://github.com/pytorch/pytorch/pull/127116 on behalf of https://github.com/atalman due to Failing internal tests ([comment](https://github.com/pytorch/pytorch/pull/127116#issuecomment-2147459339))
2024-06-04 12:53:19 +00:00
Yidi Wu
c27882ffa8 [torchbind] always fakify script object by default in non-strict export (#127116)
This diff can be risky for internal tests: any torchbind class that hasn't registered a fake class will fail and we should fix them. We've gained some confidence that this can work e2e by implementing FakeTensorQueue for TBE models in sigmoid with [D54210823](https://www.internalfb.com/diff/D54210823).

Differential Revision: [D57991002](https://our.internmc.facebook.com/intern/diff/D57991002)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127116
Approved by: https://github.com/zou3519
ghstack dependencies: #127113, #127114
2024-06-03 21:38:57 +00:00
angelayi
9e1826deff [torchbind] Add inductor support (#123709)
Example inductor generated python code: [P1245776497](https://www.internalfb.com/phabricator/paste/view/P1245776497)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123709
Approved by: https://github.com/eellison
2024-05-13 18:18:17 +00:00