When working with internal flows, it can sometimes be ambiguous what
version of the code they are working with. In this case, having the
function name available in the stack trace can help identify what you
are looking at.
Example now looks like:
```
[DEBUG] # File: /data/users/ezyang/a/pytorch/a.py:5 in f, code: return x + x
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117459
Approved by: https://github.com/Skylion007
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
This PR fixes two cases when fx generated code is invalid in python (syntax error):
1. multiple type annotation in one line: `var1: annotation1, var2: annotation2 = function_call()`
2. invalid type annotation for scalars like `var1: f32[] = function_call()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113345
Approved by: https://github.com/ezyang
example usage
* `TORCH_COMPILE_DEBUG=1 INDUCTOR_ORIG_FX_SVG=1 INDUCTOR_POST_FUSION_SVG=1 python trig.py`: show original fx node name, file, and code. see snapshot 2 where we have origin_0, 1, 2
* trig.py can be found in P816304818
Implementation
* keep original fx graph in GraphLowering, ```self.orig_gm: torch.fx.GraphModule = gm.__copy__()```
* draw original fx graph with origins ir_post_fusion ```V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)```. node.meta["buff_meta"] tracks buf_name
<img width="350" alt="Screenshot 2023-08-29 at 12 40 24 PM" src="https://github.com/pytorch/pytorch/assets/134637289/c4e197cb-ab3b-4a09-a584-c1356376accb">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107752
Approved by: https://github.com/mlazos
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Differential Revision: [D49257108](https://our.internmc.facebook.com/intern/diff/D49257108)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
Summary: We wanna do this little by little. For now, I tried only on DissectedPartsModel which needs to use aot_export version.
Test Plan: CI
Reviewed By: zhxchen17
Differential Revision: D46785735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104897
Approved by: https://github.com/JacobSzwejbka
Previously, you'd get `<eval_with_key>.0`; now you get `<eval_with_key>.0 from /data/users/ezyang/b/pytorch/test/dynamo/test_misc.py:5683 in forward`
I used to do this with globals, but now I do it with a `co_fields` parameter that's plumbed around, because putting things in globals has implications(TM). Happy to bikeshed on the `co_fields` structure.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103885
Approved by: https://github.com/albanD
Previously, you'd get `<eval_with_key>.0`; now you get `<eval_with_key>.0 from /data/users/ezyang/b/pytorch/test/dynamo/test_misc.py:5683 in forward`
I used to do this with globals, but now I do it with a `co_fields` parameter that's plumbed around, because putting things in globals has implications(TM). Happy to bikeshed on the `co_fields` structure.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103885
Approved by: https://github.com/albanD
As found in #92709, thanks to @ngimel and @jansel, currently `torch.Tensor.fn` points to `UserDefinedObjectVariable` rather than `TorchVariable`. The root cause is due to https://github.com/pytorch/pytorch/pull/92709#pullrequestreview-1273357406. To prevent this, build `TorchVariable` of `torch.Tensor.fn` pointing to `torch.ops.aten.fn`.
This issue propagates to `torch.Tensor.fn` causing graph break with `nopython=True`.
```python
import torch
import torch._dynamo as dynamo
#op = torch.ops.aten.abs_ # no graph break
op = torch.Tensor.abs_ # graph break
args = torch.empty(10)
def foo(args):
return op(args)
opt_foo = dynamo.optimize("inductor", nopython=True)(foo)
y_ = opt_foo(args)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93243
Approved by: https://github.com/jansel
This refactor was prompted by challenges handling mixed int/float
operations in C++. A previous version of this patch
added overloads for each permutation of int/float and was unwieldy
https://github.com/pytorch/pytorch/pull/87722/ This PR takes a different
approach.
The general outline of the patch is to combine the C++ types SymIntNode
and SymFloatNode into a single type, SymNode. This is type erased; we
no longer know statically at C++ if we have an int/float and have to test
it with the is_int()/is_float() virtual methods. This has a number of
knock on effects.
- We no longer have C++ classes to bind to Python. Instead, we take an
entirely new approach to our Python API, where we have a SymInt/SymFloat
class defined entirely in Python, which hold a SymNode (which corresponds
to the C++ SymNode). However, SymNode is not pybind11-bound; instead,
it lives as-is in Python, and is wrapped into C++ SymNode using PythonSymNode
when it goes into C++. This implies a userland rename.
In principle, it is also possible for the canonical implementation of SymNode
to be written in C++, and then bound to Python with pybind11 (we have
this code, although it is commented out.) However, I did not implement
this as we currently have no C++ implementations of SymNode.
Because we do return SymInt/SymFloat from C++ bindings, the C++ binding
code needs to know how to find these classes. Currently, this is done
just by manually importing torch and getting the attributes.
- Because SymInt/SymFloat are easy Python wrappers, __sym_dispatch__ now
takes SymInt/SymFloat, rather than SymNode, bringing it in line with how
__torch_dispatch__ works.
Some miscellaneous improvements:
- SymInt now has a constructor that takes SymNode. Note that this
constructor is ambiguous if you pass in a subclass of SymNode,
so an explicit downcast is necessary. This means toSymFloat/toSymInt
are no more. This is a mild optimization as it means rvalue reference
works automatically.
- We uniformly use the caster for c10::SymInt/SymFloat, rather than
going the long way via the SymIntNode/SymFloatNode.
- Removed some unnecessary toSymInt/toSymFloat calls in normalize_*
functions, pretty sure this doesn't do anything.
- guard_int is now a free function, since to guard on an int you cannot
assume the method exists. A function can handle both int and SymInt
inputs.
- We clean up the magic method definition code for SymInt/SymFloat/SymNode.
ONLY the user classes (SymInt/SymFloat) get magic methods; SymNode gets
plain methods; this is to help avoid confusion between the two types.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87817
Approved by: https://github.com/albanD, https://github.com/anjali411
Summary:
The current behavior of owning_module setter is difficult to understand: it changes the owning_module to None if owners is not 0 but increments the owners count. If the owning_module is None, the owners count should be 0 as none of them is accessible. On the other hand, if the owners count increases, the owning_module should be a collection (e.g. a list).
This diff changes owning_module to be a normal attribute. The semantic is that graph can have **at most one** owning module and can be assigned to new module.
The alternative is to use a list to represent the owning_modules of a graph but it breaks backward compatibility and the exact use cases of having multiple owning_modules are not clear.
Test Plan: Test with CI.
Differential Revision: D40200624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86822
Approved by: https://github.com/tugsbayasgalan