Commit Graph

106 Commits

Author SHA1 Message Date
Pearu Peterson
fe3309b4b8 Add optional is_coalesced argument to sparse coo tensor factory function. (#107638)
Resolves https://github.com/pytorch/pytorch/issues/107097

After this PR, instead of
```python
torch.sparse_coo_tensor(indices, values, size)._coalesced_(is_coalesced)
```
(that does not work in the autograd context, see #107097), use
```python
torch.sparse_coo_tensor(indices, values, size, is_coalesced=is_coalesced)
```

All sparse coo factory functions that take indices as input support the `is_coalesced` argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107638
Approved by: https://github.com/cpuhrsch
2023-08-26 07:24:29 +00:00
dilililiwhy
ff37f6018d Enable custom device support in fsdp checkpoint (#107289)
Fixes https://github.com/pytorch/pytorch/issues/104390
Enable custom device(privateuse1 backend) support in checkpointing by a dynamic abstract device module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107289
Approved by: https://github.com/wz337
2023-08-25 11:50:03 +00:00
Jason Lu
bc88028e8e Back out "Reland "Make adding buffers more like adding parameters (#104069)" (#106224)" (#106743)
Summary:
Original commit changeset: 81319beb97f3

Original Phabricator Diff: D47961182

Test Plan: revert to maintain backward compat with legacy ads_dper3 production package. Read details in: S357822

Reviewed By: atuljangra

Differential Revision: D48131623

@diff-train-skip-merge
(D48131623 landed internally)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106743
Approved by: https://github.com/malfet
2023-08-08 15:27:34 +00:00
Mikayla Gawarecki
d8e5f2aa6d Reland "Make adding buffers more like adding parameters (#104069)" (#106224)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106224
Approved by: https://github.com/atalman, https://github.com/albanD
2023-07-31 17:18:56 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Andrey Talman
c6653b65d8 Back out "Make adding buffers more like adding parameters (#104069)" (#105581)
Summary:
D47537831 is breaking pyper tests: https://fb.workplace.com/groups/802176577445480/posts/1018902842439518/

with `TypeError: register_buffer() takes 3 positional arguments but 4 were given`

Original commit changeset: d4b4069fbd38

Original Phabricator Diff: D47537831

Test Plan:
```
buck2 run //caffe2/torch/fb/training_toolkit/integration_tests/training_lifecycle/cogwheel_tests/pyper_release_v2:cogwheel_smallworld_inline_cvr_infer_pyper_pyper__canary_offline_training-launcher -- --run-harness-in-tupperware --build-fbpkg ads_dper3 --build-fbpkg training_platform
```

Reviewed By: atalman

Differential Revision: D47600140

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105581
Approved by: https://github.com/mikaylagawarecki
2023-07-20 03:39:53 +00:00
ekamiti
32d422f335 Make adding buffers more like adding parameters (#104069)
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.

Fixes #35735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki
2023-07-17 17:59:05 +00:00
Paweł Piskorski
7fb2a928cf fix hpu storage serialization (#101680)
Change-Id: Ia534400a0e8972590374eceba5b62a2525b796e5

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101680
Approved by: https://github.com/mikaylagawarecki
2023-06-21 21:19:49 +00:00
Pearu Peterson
39b04370db Preserve coalesce state in sparse COO tensor serialization (#102647)
Fixes #101186

Also, resolves the "serialization to preserve coalesced-ness" part in https://github.com/pytorch/pytorch/issues/73479

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102647
Approved by: https://github.com/mikaylagawarecki
2023-06-03 01:37:52 +00:00
Edward Z. Yang
e03800a93a Add torch._utils.render_call, improve printoptions (#102623)
- Add get_printoptions and printoptions context manager
- Improve edgeitems handling when it is zero
- Add render_call which can be used to conveniently print command
  line arguments of a function call, while suppressing actual
  tensor data

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102623
Approved by: https://github.com/albanD
2023-05-31 22:08:04 +00:00
shibo
9a2a6fcfa5 add get_device_index for custom device (#98804)
Fixes #ISSUE_NUMBER
as the title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98804
Approved by: https://github.com/ngimel
2023-04-12 23:58:31 +00:00
BowenBao
60a68477a6 Bump black version to 23.1.0 (#96578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96578
Approved by: https://github.com/ezyang
2023-03-15 06:27:59 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
albanD
25a6e0fd79 Fix serialization (#94096)
We now always have a `__getstate__`/`__setstate__` pair AND the `__dict__` attribute is lazily initialized. So we need to support that in our serialization code.
A quick audit of the rest doesn't look like the new `__getstate__` is too problematic. But maybe the test suite will bring more things to light.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94096
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-02-06 16:30:20 +00:00
kshitij12345
745fe35df5 [follow-up] Python Attr Serialization (#88913)
Ref: https://github.com/pytorch/pytorch/pull/81616#issuecomment-1307595402
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88913
Approved by: https://github.com/albanD
2023-01-13 17:38:51 +00:00
Pearu Peterson
b3e4f5029b Add check-sparse-tensor-invariants flag to Context - 2nd try. (#92094)
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.

The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.

`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR fixes https://github.com/pytorch/pytorch/issues/90833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
2023-01-13 14:50:33 +00:00
PyTorch MergeBot
c7a22bb7c7 Revert "Add check-sparse-tensor-invariants flag to Context. (#90849)"
This reverts commit b9a035c1c5.

Reverted https://github.com/pytorch/pytorch/pull/90849 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-01-12 09:58:16 +00:00
Pearu Peterson
b9a035c1c5 Add check-sparse-tensor-invariants flag to Context. (#90849)
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR also fixes https://github.com/pytorch/pytorch/issues/90833

# Main issue

*The following content is outdated after merging the PRs in this ghstack but kept for the record.*

The importance of this feature is that when enabling the invariants checks by default, say, via

<details>

```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:

 # Populate magic methods on SymInt and SymFloat
 import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```

</details>

a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:

```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"

RuntimeError: CUDA error: device-side assert triggered

RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.

RuntimeError: expected col_indices to be a strided and contiguous tensor

RuntimeError: expected row_indices to be a strided and contiguous tensor

RuntimeError: expected values to be a strided and contiguous tensor

RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered

RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-01-11 01:05:14 +00:00
Soumith Chintala
06326a7721 [optim] skip .item calls in all optimizers when compiling with dynamo (#88173)
@mlazos: skips `item()` calls if compiling with dynamo, by defining a helper function `_get_value` which either returns the result of `.item()` or the scalar cpu tensor if compiling with dynamo. This was done because removing `item()` calls significantly regresses eager perf. Additionally, `_dispatch_sqrt` calls the appropriate sqrt function (math.sqrt, or torch.sqrt).

Fixes https://github.com/pytorch/torchdynamo/issues/1083

This PR will no longer be needed once symint support is default.

This PR closes all remaining graph breaks in the optimizers (!!)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88173
Approved by: https://github.com/albanD
2022-12-12 17:32:35 +00:00
PyTorch MergeBot
f5fbb5001f Revert "[follow-up] Python Attr Serialization (#88913)"
This reverts commit 086b251f9a.

Reverted https://github.com/pytorch/pytorch/pull/88913 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally
2022-12-02 20:14:11 +00:00
Kshiteej K
086b251f9a [follow-up] Python Attr Serialization (#88913)
Ref: https://github.com/pytorch/pytorch/pull/81616#issuecomment-1307595402
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88913
Approved by: https://github.com/albanD
2022-11-29 16:46:20 +00:00
Pearu Peterson
50e2e4faf3 Sparse CSC/BSR/BSC serialization and pickle support (#89553)
Fixes https://github.com/pytorch/pytorch/issues/89497

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89553
Approved by: https://github.com/cpuhrsch
2022-11-23 20:56:48 +00:00
kshitij12345
f74946324e [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>

NOTE : **BC-Breaking** : After this PR, all tensors (also regular tensors) will be serialised using `_rebuild_from_type_v2`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD, https://github.com/kurtamohler
2022-11-11 21:11:12 +00:00
kshitij12345
eb9b156019 [fix] MathBits: serialization (#88182)
Fixes #81690

TODO:

* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)

Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484

Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
2022-11-09 17:15:12 +00:00
Kurt Mohler
ee28b865ee Deprecate TypedStorage, its derived classes, and all of their public methods (#85303)
Part of #85302

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85303
Approved by: https://github.com/ezyang
2022-11-08 18:11:01 +00:00
PyTorch MergeBot
78a0ca29d9 Revert "[fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)"
This reverts commit 54b6188cc6.

Reverted https://github.com/pytorch/pytorch/pull/81616 on behalf of https://github.com/mehtanirav due to Internal publishing is broken
2022-11-07 18:51:16 +00:00
Kshiteej K
54b6188cc6 [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>

NOTE : **BC-Breaking** : After this PR, all tensors (also regular tensors) will be serialised using `_rebuild_from_type_v2`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD, https://github.com/kurtamohler
2022-11-03 09:57:47 +00:00
Kurt Mohler
14d0296e5c Rename _Typed/_UntypedStorage to Typed/UntypedStorage and update docs (#82438)
### Description

Since the major changes for `_TypedStorage` and `_UntypedStorage` are now complete, they can be renamed to be public.

`TypedStorage._untyped()` is renamed to `TypedStorage.untyped()`.

Documentation for storages is improved as well.

### Issue
Fixes #82436

### Testing
N/A

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82438
Approved by: https://github.com/ezyang
2022-07-30 19:37:08 +00:00
Huy Do
12cb26509a Apply ufmt to torch internal (#81643)
This is a big bang PR, merge conflicts are probably expected and will be addressed at merge.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81643
Approved by: https://github.com/ezyang
2022-07-22 02:19:50 +00:00
PyTorch MergeBot
da87fa684c Revert "[fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)"
This reverts commit f3f8d96ea6.

Reverted https://github.com/pytorch/pytorch/pull/81616 on behalf of https://github.com/jeanschmidt due to breaking internal builds
2022-07-21 10:46:24 +00:00
kshitij12345
f3f8d96ea6 [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD
2022-07-20 18:45:33 +00:00
Feng Yuan
ae8e5c702a hook XPU device in _get_available_device_type (#76167)
Signed-off-by: Feng Yuan <feng1.yuan@intel.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76167
Approved by: https://github.com/ezyang
2022-06-14 04:34:21 +00:00
Justin W. Lin
bfc3b955a3 [DOCS] Add docstring to _get_async_or_non_blocking in _utils.py (#78036)
**Summary**
- Added docstring for the `_get_async_or_non_blocking` method in `_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78036
Approved by: https://github.com/albanD
2022-06-01 16:19:43 +00:00
johnlu
c1cbe3bad3 Enhance the _rebuild_qtensor to support other device type other than CPU (#78234)
## Motivation
There is a bug in torch._utils.rebuild_qtensor when to restore a qtensor from pickle for not CPU device type. The tensor is created on the CPU device but set to a storage which maybe a different device type.

## Solution
Create the qtensor based on the storage device type.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78234
Approved by: https://github.com/ezyang
2022-05-26 01:36:37 +00:00
Kurt Mohler
aea6e2c396 Merge torch.cuda._UntypedStorage into torch._UntypedStorage (#75459)
Fixes #74933

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75459
Approved by: https://github.com/ezyang
2022-05-19 13:54:39 +00:00
Kulin Seth
54c75e1e8f Add "mps" device to PyTorch framework.
Remove the "mlc" device for Mac platforms.

This commit will be followed up with:

* adding MPS runtime components
* PyTorch ops for MPS device

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76291
Approved by: https://github.com/albanD
2022-04-27 19:21:57 +00:00
Joel Benjamin Schlosser
30653d164d Fix serialization and deepcopying for wrapper subclasses
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73078
2022-02-24 18:21:25 +00:00
Kurt Mohler
8e7fe87630 Rename Typed/UntypedStorage to _Typed/_UntypedStorage (#72540)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72540

Reviewed By: jbschlosser

Differential Revision: D34216823

Pulled By: bdhirsh

fbshipit-source-id: 1bc9930ab582771ebf02308e035576cd1a0dbe47
(cherry picked from commit 329238f612)
2022-02-15 23:53:01 +00:00
Christian Puhrsch
4a7e07e53e Fix torch.save and detach for CSR Tensor (#71963)
Summary:
Currently saving a CSR Tensor simply fails. This also addresses the segfault encountered in https://github.com/pytorch/pytorch/issues/71652.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71963

Reviewed By: jbschlosser

Differential Revision: D33895938

Pulled By: cpuhrsch

fbshipit-source-id: a333505d3a216705147c2aaaaeb2a0fd0c2a5e43
(cherry picked from commit a88265921c)
2022-02-02 23:59:24 +00:00
Kurt Mohler
5883523c1d Remove dtype from torch.Storage and use only torch.ByteStorage (#62030)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030

Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible

Fixes https://github.com/pytorch/pytorch/issues/47442

* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls.  `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
 To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.

Original pull request: https://github.com/pytorch/pytorch/pull/59671

Reviewed By: soulitzer, ngimel

Differential Revision: D29466819

Pulled By: ezyang

fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
2021-10-05 13:50:34 -07:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Edward Yang
cf1f59452b Hacky support for meta tensor serialization. (#62192)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62192

This support is hacky because it doesn't preserve meta tensor storage
sharing (e.g., if you serialize a model with shared storage, e.g., a
tensor and a view on a tensor, when I deserialize the viewing
relationship will be broken and these are just different tensors.) The
hack is also durable, in the sense that we will be on the hook for
supporting `_rebuild_meta_tensor_no_storage` in perpetuity in the
future, even if we change our mind about the serialization format.

This unblocks an FB production use case. I didn't add C++ support to minimize
blast area of this patch.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D29910535

Pulled By: ezyang

fbshipit-source-id: d98dcdd0108dfc3ae730a071d3c583b6d0281d21
2021-07-26 14:33:45 -07:00
hauntsaninja
8754238410 torch._utils.ExceptionWrapper: fix for Exceptions with multiple args (#58131)
Summary:
Here's an example of what this PR should fix:
```
from torch._utils import ExceptionWrapper

class TwoArgException(Exception):
    def __init__(self, msg, count): ...

# If you need a "real world" exception with two args, here's one from the stdlib:
# import asyncio
# TwoArgException = asyncio.exceptions.LimitOverrunError
# or if on Python 3.7, try:
# TwoArgException = asyncio.streams.LimitOverrunError

try:
    raise TwoArgException("oh no", 0)
except Exception as e:
    data = ExceptionWrapper(where="in a test case")

data.reraise()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58131

Reviewed By: heitorschueroff

Differential Revision: D29660248

Pulled By: ezyang

fbshipit-source-id: cbcecfee9cac183354542e147ee3d956038c8986
2021-07-12 09:04:36 -07:00
Eddie Yan
645a5f706a move flatten_dense_tensors and unflatten_dense_tensors to Native (#58006)
Summary:
https://github.com/pytorch/pytorch/issues/55240

CC ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58006

Reviewed By: agolynski

Differential Revision: D28386749

Pulled By: ngimel

fbshipit-source-id: 4860c35d5ff95bcc38a243d7001180e7bd536314
2021-05-12 18:18:34 -07:00
Nikitha Malgi
197f9f0826 Merge CUDA Streams and Events (#53902)
Summary:
-----------
- Updates current_stream and default stream API's to take `optional[device]` argument
- Adds parsing logic to replace `torch.cuda.Stream` and `torch.cuda.Event` -> `torch.classes.cuda.Stream` and `torch.classes.cuda.Event` for JIT
- Merges StreamContext manager for both Eager and JIT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53902

Test Plan:
------
Run JIT tests:
python test/test_jit.py -v TestCUDA

Run eager tests:
python test/test_cuda.py -v TestCuda

Reviewed By: glaringlee

Differential Revision: D27494627

Pulled By: nikithamalgifb

fbshipit-source-id: b30b0570e38a33fb335c83762eb06ffd46a44b5c
2021-04-05 08:19:55 -07:00
Jianyu Huang
7fc03dd7c9 Back out "[pytorch][PR] Merge CUDA Streams and Events" (#54996)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54996

Original commit changeset: 45d9fee9a582

Test Plan: CI

Reviewed By: jspark1105

Differential Revision: D27444718

fbshipit-source-id: deb627230817923eaf84ade50ecb14bfbce4e779
2021-03-31 10:21:35 -07:00
Nikitha Malgi
416ba5c48f Merge CUDA Streams and Events (#53902)
Summary:
-----------
- Updates current_stream and default stream API's to take `optional[device]` argument
- Adds parsing logic to replace `torch.cuda.Stream` and `torch.cuda.Event` -> `torch.classes.cuda.Stream` and `torch.classes.cuda.Event` for JIT
- Merges StreamContext manager for both Eager and JIT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53902

Test Plan:
------
Run JIT tests:
python test/test_jit.py -v TestCUDA

Run eager tests:
python test/test_cuda.py -v TestCuda

Reviewed By: SplitInfinity

Differential Revision: D27285996

Pulled By: nikithamalgifb

fbshipit-source-id: 45d9fee9a582b5f4c82330f5f99eb88584804270
2021-03-26 14:19:39 -07:00