Summary:
Most of this was old cruft left over from special handling of `training` before we had a `bool` type. This makes all modules have a `training` attribute that is true by default and removes all other special handling.
Fixes#26884
](https://our.intern.facebook.com/intern/diff/17728129/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27109
Pulled By: driazati
Differential Revision: D17728129
fbshipit-source-id: 8ddc9fbb07a953dd05529538bfdd01ed88b5cb57
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27189
Conceptually, Module is just a view over ClassType and ivalue::object.
register_ methods are the only methods that are exception from this:
they provide an API not available on ClassType or object directly. This
PR ports this API to ClassType and makes Module truly just a view over
those two.
Test Plan: Imported from OSS
Differential Revision: D17703533
Pulled By: ZolotukhinM
fbshipit-source-id: 2cdb9fb486b3fb8527986483c7f34be7bd59fabf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26975
ExportModule doesn't exist in mobile libtorch.a, it doesn't fail for
regular mobile build guess _save_for_mobile was stripped altogether.
But for host toolchain with different linker flag this will fail.
Add #if macro as Module::save.
Test Plan: - scripts/build_mobile.sh works;
Differential Revision: D17629869
Pulled By: ljk53
fbshipit-source-id: 7d3cebe0a7c3f7b56928eb5a9d9c9174403fe6e5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25187
The bytecode export flow: dump the bytecode format for the light weighted interpreter.
* The bytecode is generated without input spec optimization. It would be more generic (input independent) with no obvious performance degradation (to be tested).
* Main API: torch::jit::script::Module::save(filename, extra_files, bool *bytecode_format* = false).
* Both bytecode and module object are exported in pickle format.
* The module object (in data.pkl) is the same as the original JIT model.
* The serializer is dependent on pickle only (no protobuf or Json).
* The major functionality is forked in ScriptModuleSerializer2::serialize().
* The test loader is test_bc_export.cpp.
* Simple APIs are added in Code and its implementation to get necessary information (instructions, operators and constants).
* Since there's no dependency on graph/node, GetAttr is promoted from an operator to first-class instruction (https://github.com/pytorch/pytorch/pull/25151) .
* Some definitions (instructions, writeArchive, etc) that are shared by full JIT and bytecode are pulled out of the local namespace (https://github.com/pytorch/pytorch/pull/25148).
The output layout looks like:
* folders of methods.
* In each method folder (for example, forward/):
* bytecode.pkl: instructions and operators
* constants{.pkl,/}: constant list in constants.pkl. If there are tensors in constants, the binary tensor files in constants/ folder.
* data{.pkl,/}: the module object, with binary tensor files in data/ folder. The same as in torchscript.
Test Plan: Imported from OSS
Differential Revision: D17076411
fbshipit-source-id: 46eb298e7320d1e585b0101effc0fcfd09219046
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25740
Previously we had `omit_method_bodies`, `omit_attr_values` and
`omit_param_values`. They were called the same in the python bindings
and it was hard to remember their proper spelling. This PR changes them
to `code`, `attrs`, and `params` which are might easier to remember. It
also flips their meaning - now they enable printing instead of disabling
it. I also changed the default values to 'print all' from 'print
nothing', as that's the most usual way of using it.
Test Plan: Imported from OSS
Differential Revision: D17217517
Pulled By: ZolotukhinM
fbshipit-source-id: fa56e478a732ffd685d885f11c9da0457cd03d16
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799
Before, we inlined as part of the initial IR generation process, which
has a few disadvantages:
1. It loses information about what nodes came from which function/method
calls. Other parties who want to implement transformations on the
function/module level don't have a reliable way of doing so.
2. It duplicates a ton of code if we are inlining the same
function/method a tons of times.
After this PR: inline is deferred to the optimization stage, so
optimizations that rely on inlining will still work. But things get
serialized with the function/method calls in.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23799
Differential Revision: D16652819
Test Plan: Imported from OSS
Reviewed By: jamesr66a
Pulled By: suo
fbshipit-source-id: a11af82aec796487586f81f5a9102fefb6c246db
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23630
This is temporary, won't be needed with the new serialization format.
But for now, since the main module gets its name from the archive name,
we need this for safety, other wise something like
`torch.jit.save("torch.pt") will break things.
Test Plan: Imported from OSS
Reviewed By: jamesr66a
Differential Revision: D16592404
Pulled By: suo
fbshipit-source-id: b538dc3438a80ea7bca14d84591ecd63f4b1289f
Summary:
This is part of the effort to shrink OSS libtorch mobile build size.
We shouldn't need Module::save function on mobile - it depends on
csrc/jit/export.cpp which then depends on ONNX. By gating these two
methods we can avoid these dependencies for libtorch mobile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23415
ghstack-source-id: 87288228
Reviewed By: dreiss
Differential Revision: D16511143
fbshipit-source-id: fd031f91fcf9b7be54cbe1436506965af94ab537
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#19587 [jit] Make ScriptModule.training an attribute instead of a parameter**
Remove the hack we had previously where `training` was a buffer
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19587
Differential Revision: D15502768
Pulled By: driazati
fbshipit-source-id: 3022f2d57ec6849868f9225d9bc2bfb7828cb318
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.
After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.
**Note that this PR is BC-breaking in the following use cases:**
**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.
**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
# Change gradient to a sparse tensor
params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))
grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad) # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072
Differential Revision: D14075257
Pulled By: yf225
fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
Summary:
Fixes#20017
This wraps the `torch._C.Function` currently returned from `torch.jit.script` and `torch.jit.trace` in a `ScriptFunction` and `TracedFunction` respectively, both of which are just wrappers to hold the function.
](https://our.intern.facebook.com/intern/diff/15403161/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20386
Pulled By: driazati
Differential Revision: D15403161
fbshipit-source-id: 94fb9f32929e62a00be6cf7512ea144ec9b91e0b