Commit Graph

219 Commits

Author SHA1 Message Date
Joel Schlosser
5855c490f0 Proper view support for jagged layout NestedTensor (#113279)
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
    * `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
    * This ops is implemented on the Python side using torch.library so we can return a subclass instance
    * `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
    * The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
    * `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
    * `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
    * Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)

With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.

Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
2024-03-20 23:45:34 +00:00
Joel Schlosser
ea8f6e2e54 Subclass view fake-ification via reified ViewFuncs (#118405)
This PR:
* Uses reified ViewFuncs to swap in fake tensors / symbolic SymInts for view replay during subclass view fake-ification
* Enables automatic dynamic on view bases -> fakeifies according to the resultant symbolic context instead of the old "all-static" approach
* Covers the following view types:
    * subclass -> dense
    * dense -> subclass
    * subclass -> subclass
* Dense -> dense views are handled the old way via an `as_strided()` call, as it's likely there is no view func available

Differential Revision: [D54269082](https://our.internmc.facebook.com/intern/diff/D54269082)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118405
Approved by: https://github.com/ezyang
2024-03-07 19:56:16 +00:00
Chengji Yao
0e604becc5 [NJT] support chunk on batch dim (#119713)
- support chunk op on batch dim
- support empty_like op
- add tests for the like ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119713
Approved by: https://github.com/jbschlosser
2024-03-05 17:57:50 +00:00
soulitzer
312ce35c1f Rename singleton int to nested int (#119661)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119661
Approved by: https://github.com/ezyang
2024-02-16 19:21:17 +00:00
Joel Schlosser
756cf2913d Fix NJT stride access in SDPA dispatcher logic (#119846)
`._stride` -> `._strides`

Adds test to cover this case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119846
Approved by: https://github.com/drisspg, https://github.com/ani300, https://github.com/soulitzer
ghstack dependencies: #119910
2024-02-14 22:37:52 +00:00
Joel Schlosser
0560c193a6 Fix meta registration for _flash_attention_forward() [ROCm forward fix] (#119910)
Addresses ROCm failures from #119812

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119910
Approved by: https://github.com/drisspg
2024-02-14 22:37:52 +00:00
Joel Schlosser
31e59766e7 Fix meta registration for _flash_attention_forward() (#119812)
Meta registration wrongly assumes 4D inputs, while the underlying op allows 3D inputs for the `mha_varlen_fwd()` case.
Testing: I added `detach()`es so the NJT test `test_sdpa_compile()` won't fail for a view-related reason. It should pass now with this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119812
Approved by: https://github.com/drisspg
2024-02-14 02:38:53 +00:00
PyTorch MergeBot
8994f2367d Revert "Fix jagged NT softmax semantics (#119459)"
This reverts commit 6adadbaf79.

Reverted https://github.com/pytorch/pytorch/pull/119459 on behalf of https://github.com/malfet due to broke dynamo, see https://github.com/pytorch/pytorch/actions/runs/7835402753/job/21386634602 ([comment](https://github.com/pytorch/pytorch/pull/119459#issuecomment-1935246413))
2024-02-09 02:31:49 +00:00
Joel Schlosser
6adadbaf79 Fix jagged NT softmax semantics (#119459)
Before: `softmax` definition uses `jagged_unary_pointwise()` (wrong)
After: `softmax` impl adjusts the `dim` arg to account for the difference in dimensionality between the outer NT and the NT's `_values`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119459
Approved by: https://github.com/soulitzer
2024-02-08 20:13:12 +00:00
David Berard
278a0e1600 [NestedTensor] Support binary pointwise ops with >2 inputs (if inputs are non-tensors) (#119419)
It should usually be safe to run pointwise binary ops with >2 inputs. e.g. threshold_backward(tensor, tensor, scalar): we just operate on the values of the nested tensors, and pass in the other args as-is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119419
Approved by: https://github.com/soulitzer
2024-02-08 20:06:40 +00:00
Huy Do
3ed9df36a9 Clean up some obsolete TODOs in run_test and several test files (#119113)
* The TODOs in `test/test_nestedtensor.py` has been mitigated, I keep the issue for reference.
* ~~The TODOs in `test/test_ops_fwd_gradients.py` doesn't apply anymore~~
* The TODOs in `run_test.py` to support disabling C++ tests is probably not going to happen.  I have never seen a flaky C++ test that needs to be disabled before.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119113
Approved by: https://github.com/kit1980
2024-02-03 23:54:30 +00:00
David Berard
460950d3aa [Nested Tensor] Support ragged_idx != 1 on aten::is_same_size, aten::_to_copy (#118442)
is_same_size is needed internally; `_to_copy` should be easy because it doesn't support new layouts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118442
Approved by: https://github.com/cpuhrsch
2024-01-30 01:32:51 +00:00
David Berard
2842d3c9d3 [Nested Tensor] view: basic support for ragged_idx != 1 and _unsafe_view (#118317)
Uses case: `_unsafe_view` is used in aot_autograd to create a view that doesn't register as a view:

eebe7e1d37/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py (L470-L476)

If a transposed nested tensor (i.e. NT with ragged_idx != 1) encounters this code path, it previously would fail for two reasons: 1) because `_unsafe_view` isn't registered, and 2) because ragged_idx != 1 is not supported. This PR adds support for `_unsafe_view` (completely reusing the implementation of `view`; this just registers `_unsafe_view` as another op using the same implementation). It also adds support for ragged_idx != 1, but only for trivial cases where inp._size == size (the use case used by aot_autograd).

Tests: verify that the result of `_unsafe_view` doesn't have a `_base`, and that simple views on transposed NTs work.

Differential Revision: [D53096814](https://our.internmc.facebook.com/intern/diff/D53096814)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118317
Approved by: https://github.com/soulitzer
2024-01-26 17:29:37 +00:00
David Berard
52c5803088 [NestedTensor] Support ragged_idx != 1 in pointwise ops (#118157)
This PR allows pointwise ops to operate on tensors with ragged_idx != 1. It does this by passing the ragged_idx metadata into the construction of the returned NestedTensor when computing pointwise ops. The assumption is that: pointwise ops can operate directly on the values tensors, and the resulting tensor should have all the same metadata properties as the input tensors. For binary ops, a test is added to verify that adding two tensors with different ragged_idx cannot be added.

Previously:
* unary pointwise ops would error out when performed on nested tensors with ragged_idx != 1
* binary pointwise ops would produce tensors with nonsense shapes

Differential Revision: [D53032641](https://our.internmc.facebook.com/intern/diff/D53032641)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118157
Approved by: https://github.com/jbschlosser
2024-01-25 23:34:15 +00:00
YuqingJ
a97d00cca5 [Nested Tensor]Support SDPA math fallback for jagged layout nested tensor (#116445)
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer
2024-01-12 17:30:40 +00:00
PyTorch MergeBot
9f87760160 Revert "[Nested Tensor]Support SDPA math fallback for jagged layout nested tensor (#116445)"
This reverts commit e55a778cbb.

Reverted https://github.com/pytorch/pytorch/pull/116445 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but i see it fails ROCm test in trunk due to an unsupported use case e55a778cbb ([comment](https://github.com/pytorch/pytorch/pull/116445#issuecomment-1888060036))
2024-01-11 22:21:45 +00:00
YuqingJ
e55a778cbb [Nested Tensor]Support SDPA math fallback for jagged layout nested tensor (#116445)
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer
2024-01-11 20:28:40 +00:00
Joel Schlosser
f70aeb4ffd Fix backward for reshape() on jagged layout NT (#117137)
Provides symbolic C++-side `reshape_as()` / `reshape()` decomps for jagged layout NTs to make the backwards pass work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117137
Approved by: https://github.com/soulitzer
2024-01-10 23:35:07 +00:00
Joel Schlosser
0b0c76bace Support squeeze.dim for jagged NT (#116891)
As title. Needed for `rev_view_func()` of `unsqueeze()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116891
Approved by: https://github.com/soulitzer
ghstack dependencies: #115894, #116512
2024-01-06 01:00:53 +00:00
Joel Schlosser
3c21264c9b Introduce reverse view_funcs (#115894)
Part 2 of implementation for general [subclass view fake-ification](https://docs.google.com/document/d/1C5taWiplmX7nKiURXDOAZG2W5VNJ2iV0fQFq92H0Cxw).

Details:
* Codegen `rev_view_func()` alongside `view_func()`
    * Reverse view_func gives you a "base" from a "view": `rev_view_func(new_view) -> new_base` AKA it plays the original view backwards
* Utilizes the functional inverses defined in `FunctionalInverses.cpp`, passing `InverseReturnMode::AlwaysView`
* Manually implements functional inverses for `narrow()` and `chunk()`
* **NB: Multi-output views now set view_func() / rev_view_func() for each of the output views!**
    * Due to this, the `as_view()` overload that operates on a list of views is scrapped in favor of iteration via codegen

Example codegen in `ADInplaceOrViewTypeN.cpp`:
```cpp
at::Tensor narrow(c10::DispatchKeySet ks, const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length) {
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::_ops::narrow::redispatch(ks & c10::after_ADInplaceOrView_keyset, self, dim, start, length);
  })();
  std::function<at::Tensor(const at::Tensor&)> func=nullptr;
  std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
  if (false || !self.unsafeGetTensorImpl()->support_as_strided() ||
      c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
    func = [=](const at::Tensor& input_base) {
      return at::_ops::narrow::call(input_base, dim, start, length);
    };
    rev_func = [=](const at::Tensor& input_view) {
      // NB: args from narrow() signature are passed along to the inverse
      return at::functionalization::FunctionalInverses::narrow_copy_inverse(self, input_view, at::functionalization::InverseReturnMode::AlwaysView, dim, start, length);
    };
  }
  auto result = as_view(/* base */ self, /* output */ _tmp, /* is_bw_differentiable */ true, /* is_fw_differentiable */ true, /* view_func */ func, /* rev_view_func */ rev_func, /* creation_meta */ InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : (at::GradMode::is_enabled() ? CreationMeta::DEFAULT : CreationMeta::NO_GRAD_MODE));
  return result;
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115894
Approved by: https://github.com/soulitzer
2024-01-05 16:48:12 +00:00
Joel Schlosser
ea3a5f8ddc Add chunk for jagged layout NT (#115842)
Nice to have for the [SDPA tutorial](https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115842
Approved by: https://github.com/soulitzer
ghstack dependencies: #115192, #116111
2023-12-20 20:13:20 +00:00
Joel Schlosser
29b198dcf8 Add markDynamoStrictTest to NT tests (#116111)
Decorates all NT tests with `@markDynamoStrictTest` to ensure we get the correct signal. Adds xfails where needed to get things passing.

Includes a fix in meta_utils.py for a bug that was breaking several python 3.11 tests. In particular, a dense tensor graph input that is a view of a strided NT would slip past Dynamo's check and break in meta-ification.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116111
Approved by: https://github.com/soulitzer, https://github.com/zou3519
ghstack dependencies: #115192
2023-12-20 20:13:20 +00:00
Joel Schlosser
1474eb5f29 Fix jagged composite impl of flatten() (#115192)
Need to handle this in `NestedTensor.__torch_function__()` since it's CompositeImplicit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115192
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-12-19 19:15:21 +00:00
Joel Schlosser
bf62511e07 Reshape decomposition for jagged layout NT (#115191)
No more segfault from using `reshape()` on jagged NT :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115191
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-12-18 22:34:41 +00:00
Joel Schlosser
6fee208064 Handle -1 in jagged layout NT view ops (#115843)
Allows for inheriting the ragged and batch dims via -1:
```python
nt.view(-1, -1, D)
nt.expand(B, -1, D)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115843
Approved by: https://github.com/soulitzer
ghstack dependencies: #115636
2023-12-15 00:42:47 +00:00
Joel Schlosser
0ff155fb65 Fix SDPA for SAM (#115636)
Addresses the regression for Segment Anything Fast in https://github.com/pytorch-labs/segment-anything-fast/issues/99
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115636
Approved by: https://github.com/soulitzer, https://github.com/ani300
2023-12-12 18:52:38 +00:00
soulitzer
8885128dcc Fix backward for SDPA NT jagged layout (#115576)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115576
Approved by: https://github.com/jbschlosser, https://github.com/ani300
2023-12-12 18:35:40 +00:00
Yanbo Liang
da341d0d48 [Dynamo][6.1/N] Refactor out TorchInGraphFunctionVariable and improve heuristic (#113432)
This is splitted from #113009, please check https://github.com/pytorch/pytorch/pull/113009#issuecomment-1804417925 for more details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113432
Approved by: https://github.com/ezyang, https://github.com/jansel
2023-12-09 05:11:44 +00:00
PyTorch MergeBot
e8e4141773 Revert "[Dynamo][6.1/N] Refactor out TorchInGraphFunctionVariable and improve heuristic (#113432)"
This reverts commit e61d6b42f0.

Reverted https://github.com/pytorch/pytorch/pull/113432 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing dynamo tests in trunk e61d6b42f0, landrace? ([comment](https://github.com/pytorch/pytorch/pull/113432#issuecomment-1847787981))
2023-12-08 20:15:39 +00:00
Yanbo Liang
e61d6b42f0 [Dynamo][6.1/N] Refactor out TorchInGraphFunctionVariable and improve heuristic (#113432)
This is splitted from #113009, please check https://github.com/pytorch/pytorch/pull/113009#issuecomment-1804417925 for more details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113432
Approved by: https://github.com/ezyang, https://github.com/jansel
2023-12-08 17:15:14 +00:00
Joel Schlosser
3b01f30b20 Prevent invalid pointwise ops on jagged with transposed ragged dim (#115190)
TODO: tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115190
Approved by: https://github.com/soulitzer, https://github.com/ani300
2023-12-08 00:54:03 +00:00
Yanbo Liang
4620170008 [Dynamo] Revert multiple PRs since they triggered compilation stuck internally (#115126)
Revert the following PRs to mitigate internal compilation stuck:
#113432
#114016
#114507
#114196
#114739
#114669

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115126
Approved by: https://github.com/xush6528
2023-12-05 22:35:37 +00:00
Antoni Viros
1dc4588c6a Add an SDPA dispatcher for nested tensors with jagged layouts (#114164)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114164
Approved by: https://github.com/jbschlosser
2023-12-05 06:33:45 +00:00
PyTorch MergeBot
5cfda9b7f8 Revert "Add an SDPA dispatcher for nested tensors with jagged layouts (#114164)"
This reverts commit aafa8233a4.

Reverted https://github.com/pytorch/pytorch/pull/114164 on behalf of https://github.com/malfet due to Broke ROCM, see aafa8233a4 ([comment](https://github.com/pytorch/pytorch/pull/114164#issuecomment-1839798986))
2023-12-05 00:35:20 +00:00
Antoni Viros
aafa8233a4 Add an SDPA dispatcher for nested tensors with jagged layouts (#114164)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114164
Approved by: https://github.com/jbschlosser
2023-12-04 21:54:02 +00:00
Yanbo Liang
033d7b670a [Dynamo][6.1/N] Refactor out TorchInGraphFunctionVariable and improve heuristic (#113432)
This is splitted from #113009, please check https://github.com/pytorch/pytorch/pull/113009#issuecomment-1804417925 for more details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113432
Approved by: https://github.com/ezyang
2023-11-17 23:42:00 +00:00
Joel Schlosser
ea39cc34f9 Refactor NestedTensor subclass to remove ragged_size from constructor (#113491)
This PR removes the need for passing `ragged_size` into the `NestedTensor` constructor. This was an artifact of fake-ification, where sometimes we needed the NT to have a symbolic singleton symint shape for the ragged dimension. The new way of achieving this is to also store mappings between fake / functional tensors -> symbolic symints in the ragged structure registry. Now the `NestedTensor` constructor can just query this registry for the `ragged_size`.

Old: `NestedTensor(values, offsets, *, ragged_size=None, **kwargs)`
New: `NestedTensor(values, offsets, **kwargs)`

This makes it possible to have a `_nested_view_from_values_offsets(values, offsets)` without needing to pass a `ragged_size`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113491
Approved by: https://github.com/ezyang, https://github.com/soulitzer
2023-11-14 19:32:21 +00:00
Antoni Viros
1aece432ba Implement narrow from a regular tensor to jagged tensor (#112770)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112770
Approved by: https://github.com/cpuhrsch
2023-11-13 19:09:59 +00:00
Yuqing Jiang
9f3e378125 [nested tensor]add split and layer_norm_backward operations (#113108)
Summary:
Add split and layer_norm_backward.

Note: It is non trivial to support split_with_sizes backward so adding the split operation to support the use case in the model.

Test Plan: unit tests

Differential Revision: D51052966

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113108
Approved by: https://github.com/soulitzer
2023-11-08 07:44:35 +00:00
soulitzer
538ec4942a Do not generate zero-numel NT by default in helper and improve to_padded_tensor msg (#113162)
Improvements: improves to_padded_tensor error message when passed a NT with zero numel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113162
Approved by: https://github.com/jbschlosser
ghstack dependencies: #113031, #112519, #113091
2023-11-07 19:56:26 +00:00
soulitzer
0c991acab0 Factor out test_nestedtensor setUp tearDown and call super (#113091)
Fixes https://github.com/pytorch/pytorch/issues/112845

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113091
Approved by: https://github.com/jbschlosser
ghstack dependencies: #113031, #112519
2023-11-07 19:56:26 +00:00
soulitzer
c2084da14a [NT] Backward support for broadcasting binary ops (#112519)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112519
Approved by: https://github.com/jbschlosser
ghstack dependencies: #113031
2023-11-07 00:03:21 +00:00
soulitzer
53fff56ab8 Graph break cleanly for test_nestedtensor (#112662)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112662
Approved by: https://github.com/jbschlosser
2023-11-03 07:20:43 +00:00
Joel Schlosser
51a38380d1 Fix torch.load(..., weights_only=True) for NT (#112516)
Found when looking into #112509
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112516
Approved by: https://github.com/soulitzer
2023-11-02 14:41:04 +00:00
Yuqing Jiang
24f217ee64 [Nested tensor] Add more ops in Python subclass nested tensor (#112302)
Summary: Add dropout, split_with_sizes, and silu operations in python subclass nested tensor

Test Plan: unit tests

Differential Revision: D50676812

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112302
Approved by: https://github.com/soulitzer, https://github.com/jbschlosser
2023-10-31 20:57:05 +00:00
William Wen
a380bf3297 [dynamo, test] skip flaky dynamo-wrapped tests (#112310)
ghstack-source-id: 7a87e33e7513e7924e4513b6473284562989ed4c
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112309

Skip flaky tests reported by
- https://github.com/pytorch/pytorch/issues/111825
- https://github.com/pytorch/pytorch/issues/111826
- https://github.com/pytorch/pytorch/issues/111909
- https://github.com/pytorch/pytorch/issues/112142
- https://github.com/pytorch/pytorch/issues/112220

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112310
Approved by: https://github.com/xmfan
2023-10-28 04:14:57 +00:00
Joel Schlosser
2225e6361d Support for as_nested_tensor() with jagged layout + fixed nested_tensor() semantics (#112304)
This PR:
* Adds support for the `layout` kwarg to `torch.nested.as_nested_tensor()`
* Fixes `torch.nested.nested_tensor()`
    * It should accept a list of lists of scalars
    * It should not preserve autograd history
* Adds extensive testing for these two functions

Semantics for the two functions follow those of the strided layout:
* `torch.nested.nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **with no autograd history**
    * `tensor_list` can be a list of Tensors or list of lists of scalars
* `torch.nested.as_nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **preserving autograd history of `tensor_list`**
    * `tensor_list` must be a list of Tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112304
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-10-28 02:34:27 +00:00
Antoni Viros
668c3b3f3b Add embedding op to jagged NT (#112288)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112288
Approved by: https://github.com/cpuhrsch
2023-10-28 01:29:17 +00:00
soulitzer
73170b23d4 Add compile support for NT unbind (#111531)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111531
Approved by: https://github.com/ezyang
2023-10-23 21:16:20 +00:00
Joel Schlosser
ba2ba9621c More NT subclass op support for SAM (#111253)
With this PR, we have full op support for SAM without needing to unwrap subclass into jagged buffer -> run ops -> rewrap manually. Specifically, this was previously happening in the MaskDecoder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111253
Approved by: https://github.com/soulitzer, https://github.com/cpuhrsch
2023-10-18 21:21:28 +00:00
soulitzer
2dc1726ab7 Compile NestedTensor with AOTAutograd (#110529)
This PR has a number of changes that improve subclass support for AOTAutograd/Inductor in general:
-  previously if a subclass does extra aliasing between graph outputs/inputs in a way, the partitioner would complain because grad_outputs are the outputs reused as-is. Now we do a view_as(self) to workaround this.
- Use dense -> dense metadata when working with fwd_output_strides during backward. This is important since the stride information comes from inductor which sees the dense to dense graph.
- Inductor requires that the inputs to the compiled backward to match some expected strides computed during compilation. We make sure to make the inner tensors of the subclass contiguous (previously, we only made the subclass itself contiguous)

Changes specific to NestedTensor relevant to compilation:
- Properly handle the case where `__tensor_unflatten__` is passed non-symbolic dense tensors and with meta extracted from fake subclasses.
- Skip var_to_range logic for singleton int
- Skip size hint logic in inductor for singleton int

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110529
Approved by: https://github.com/bdhirsh
2023-10-17 21:17:10 +00:00
Jesse Cai
4c01686027 Public API for constructing NT with jagged layout from tensor list (#111078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111078
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #109123
2023-10-13 03:27:41 +00:00
soulitzer
110382bacf Make NestedTensor compilable with eager backend (#109171)
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.

Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-10-11 04:47:10 +00:00
Joel Schlosser
ac01304e22 pin_memory support for NT (#110404)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110404
Approved by: https://github.com/cpuhrsch, https://github.com/albanD
ghstack dependencies: #110292
2023-10-10 21:58:19 +00:00
soulitzer
fda0a965c7 [reland] Support SingletonSymNode mul with coefficient (#110673)
reland of https://github.com/pytorch/pytorch/pull/110369
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110673
Approved by: https://github.com/ezyang
2023-10-10 19:37:17 +00:00
Joel Schlosser
17348b0f51 Implement split_with_sizes backward for NT (#110647)
Needed internally. Note that `split_with_sizes()` for NT is currently supported only on `dim=-1`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110647
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #110646
2023-10-06 18:44:22 +00:00
PyTorch MergeBot
81ce5d5725 Revert "pin_memory support for NT (#110404)"
This reverts commit 3597325bc7.

Reverted https://github.com/pytorch/pytorch/pull/110404 on behalf of https://github.com/kit1980 due to Previous PR in the stack caused CUDA memory leaks ([comment](https://github.com/pytorch/pytorch/pull/110404#issuecomment-1749850211))
2023-10-06 01:03:17 +00:00
PyTorch MergeBot
1c3fae46ee Revert "Support SingletonSymNode mul with coefficient (#110369)"
This reverts commit eb8feb8ff8.

Reverted https://github.com/pytorch/pytorch/pull/110369 on behalf of https://github.com/PaliC due to bottom diff is causing a plethora of internal failures ([comment](https://github.com/pytorch/pytorch/pull/110369#issuecomment-1749802899))
2023-10-05 23:51:28 +00:00
Joel Schlosser
3597325bc7 pin_memory support for NT (#110404)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110404
Approved by: https://github.com/cpuhrsch, https://github.com/albanD
ghstack dependencies: #110292
2023-10-05 16:33:22 +00:00
soulitzer
eb8feb8ff8 Support SingletonSymNode mul with coefficient (#110369)
We want to be able to use SingletonSymNode to represent strides for Jagged layout tensor. The following is for 3D, but easily generalizable to higher dimensions.

Constraints:
- [B, x, D] (where x represents the "variably lengthed dim") can be strided in two ways [x, 1, sum(x)] and [dx, d, 1]. We need two different placeholder values depending on how the jagged tensor is strided.
- When doing operations we need the strides of output tensors to be expressable in terms of the strides and sizes of the inner tensors. Given [B, x, D] @ [D, D'], the output strides is [x * D', D', 1] rather than some opaque [x2, D', 1]. This constraint exists because if I'm tracing, I need a symint to represent the output stride. This symint needs to come from somewhere; I get it in several ways: (1) create a constant, (2) unbacked symint, (3) create a new input using a source, (4) output of an operation on an existing symint. It is clear that (4) is what we want here, which brings us to the design below.

Design:

Given the two constraints, the most straightforward way to implement this is actually to update SingletonSymNode to include some scalar factor, i.e. Morally, SingletonSymNode represents `factor * [s_0, s_1, …, s_n]` This enables us to symbolically compute strides from sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110369
Approved by: https://github.com/ezyang
ghstack dependencies: #110044
2023-10-04 22:56:15 +00:00
Joel Schlosser
3693777a86 Pickle support for NT (#110219)
Fixes #104198
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110219
Approved by: https://github.com/cpuhrsch
2023-09-29 15:30:06 +00:00
soulitzer
2bcff92540 Add NestedTensor python subclass (#108314)
Description coming soon

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108314
Approved by: https://github.com/jbschlosser
ghstack dependencies: #108808
2023-09-11 18:29:20 +00:00
Joel Schlosser
e5548f8195 NT support for cat with dim > 0 when representable as jagged (#108428)
Used in SAM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108428
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #108361, #108370, #108362
2023-09-03 01:50:32 +00:00
Joel Schlosser
76ccf6c770 NT support for narrow() on dim=0 (#108362)
Satisfies request here: https://github.com/pytorch/pytorch/issues/105913#issuecomment-1652249934
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108362
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #108361, #108370
2023-09-02 23:48:37 +00:00
Joel Schlosser
54dcb0ea61 NT support for matmul of (B, *, C, D) NT with dense (D, E) (#108370)
Used in SAM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108370
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #108361
2023-09-01 20:45:44 +00:00
Joel Schlosser
414cb26ded NT support for cat with dim=0 (#108361)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108361
Approved by: https://github.com/cpuhrsch
2023-09-01 02:02:53 +00:00
Jirka Borovec
9178deedff removing some redundant str splits (#106089)
drop some redundant string splits, no factual changes, just cleaning the codebase

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106089
Approved by: https://github.com/albanD, https://github.com/malfet
2023-09-01 00:22:58 +00:00
Joel Schlosser
33d70be95f Binary out-of-place ge.Scalar / eq.Scalar support for NT (#107892)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107892
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #107891
2023-08-28 15:18:37 +00:00
Joel Schlosser
e917d2749a Unary out-of-place sin / cos support for NT (#107891)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107891
Approved by: https://github.com/cpuhrsch
2023-08-28 15:17:34 +00:00
Justin Chu
73e1455327 [BE] Enable ruff's UP rules and autoformat test/ (#105434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434
Approved by: https://github.com/albanD
2023-07-19 20:36:06 +00:00
drisspg
4b9ba3fad5 Allow discontiguous NestedTensors to empty_like (#98383)
# Summary
Preivously we disallowd dis-contiguous NTs to passed into to empty_like. This was done out of an abundance of caution, :think:. However it should be safe to create an empty NT for dis-contiguous NTs. Empty like does account for offsets, strides, and sizes in construction of the result and therefore this should be safe.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98383
Approved by: https://github.com/cpuhrsch
2023-05-03 02:27:08 +00:00
Driss Guessous
5a81508bb6 Add NestedTensor ops: logical_not, logical_not_, masked_fill (#97934)
# Summary
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 7954302</samp>

This pull request adds support for `logical_not` and `masked_fill` operations on nested tensors, which are tensors that can have tensors as elements. It modifies the `native_functions.yaml` file to dispatch these operations to the nested tensor backend, implements the logic for these operations in `NestedTensorBinaryOps.cpp` and `NestedTensorUnaryOps.cpp`, adds documentation in `nested.rst`, and adds tests in `test_nestedtensor.py`.

## Description
<!--
copilot:walkthrough
-->
### <samp>🤖 Generated by Copilot at 7954302</samp>

*  Implement `logical_not` operation on nested tensors ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R1164), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R1172), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f7c94671810b3ce652f9ad5458518cb7bbd67e8bf7e84e0a2fba641d878ba7c5R45-R56), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-c8b131d009badb3f92031b2aaa6e7f93a793f13caee278ea78e1c57d78c0399eR203), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0L854-R867))
  - Add `NestedTensor_logical_not` and `NestedTensor_logical_not_` functions to `native_functions.yaml` for CPU and CUDA dispatch ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R1164), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R1172))
  - Define `NestedTensor_logical_not` and `NestedTensor_logical_not_` functions in `NestedTensorUnaryOps.cpp` using `map_nt` and `get_buffer` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f7c94671810b3ce652f9ad5458518cb7bbd67e8bf7e84e0a2fba641d878ba7c5R45-R56))
  - Document `torch.logical_not` function for nested tensors in `nested.rst` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-c8b131d009badb3f92031b2aaa6e7f93a793f13caee278ea78e1c57d78c0399eR203))
  - Add subtest for `logical_not` function in `test_activations` method in `TestNestedTensorDeviceType` class in `test_nestedtensor.py` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0L854-R867))
* Implement `masked_fill` operation on nested tensors ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R7439), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f847e41e3d373230df0b25574e993ec0e6b699bf16796b3df9ae9fb518048e25L210-R224), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-c8b131d009badb3f92031b2aaa6e7f93a793f13caee278ea78e1c57d78c0399eR197), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0R677-R688), [link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0R2515-R2528))
  - Add `NestedTensor_masked_fill` function to `native_functions.yaml` for CPU and CUDA dispatch ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991R7439))
  - Define `NestedTensor_masked_fill` function in `NestedTensorBinaryOps.cpp` using `NestedTensor_elementwise_Tensor` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f847e41e3d373230df0b25574e993ec0e6b699bf16796b3df9ae9fb518048e25L210-R224))
  - Document `torch.Tensor.masked_fill` function for nested tensors in `nested.rst` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-c8b131d009badb3f92031b2aaa6e7f93a793f13caee278ea78e1c57d78c0399eR197))
  - Add test case for `masked_fill` function in `TestNestedTensorDeviceType` class in `test_nestedtensor.py` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0R677-R688))
  - Add test case for backward pass of `masked_fill` function in `TestNestedTensorAutograd` class in `test_nestedtensor.py` ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-6eef496a8ec635930b6e52507358e069c80021f3535b8737d39e14ffc38950c0R2515-R2528))
* Improve error message for unsupported element-wise binary operations on nested dense tensors ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f847e41e3d373230df0b25574e993ec0e6b699bf16796b3df9ae9fb518048e25L142-R150))
  - Modify `NestedTensor_elementwise_Tensor` function in `NestedTensorBinaryOps.cpp` to include operation name in error message ([link](https://github.com/pytorch/pytorch/pull/97934/files?diff=unified&w=0#diff-f847e41e3d373230df0b25574e993ec0e6b699bf16796b3df9ae9fb518048e25L142-R150))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97934
Approved by: https://github.com/cpuhrsch
2023-03-30 08:14:39 +00:00
Driss Guessous
f603873c1b add various NT ops needed for testing (#97837)
# Summary
Add some Simple unary and binary NT ops
- Sub
- sgn
- abs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97837
Approved by: https://github.com/cpuhrsch
2023-03-29 23:43:37 +00:00
Joel Schlosser
0d66db1b2a Implement last dim split_with_sizes for NT (forward only, non-SymInt-ified) (#97446)
This is needed for the HSTU model.

Details:
* ~~NT `chunk` now calls into NT `split_with_sizes` since the latter is more general~~ (removed; they're totally separate)
* Throws for backward
* Only operates over the last dim (`dim=-1`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97446
Approved by: https://github.com/cpuhrsch
2023-03-23 22:17:06 +00:00
drisspg
db15d191b6 Update NestedTensor add to support non identical striding for NT+NT (#97195)
# Summary
NestedTensors currenlty don't support non-identical strided addition. When accumulating grad it possible to try and accumulate a grad with different striding then the old var and there is no way to change this in user code. This is a solution.. probs should support strided addition for NT
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97195
Approved by: https://github.com/albanD, https://github.com/cpuhrsch
2023-03-22 03:34:47 +00:00
Joel Schlosser
77e73b9b7a Refactor NT offsets metadata to be a Tensor (#96909)
It's tedious work, but somebody's gotta do it.

Benefits:
* Enable access to offsets metadata from Python via private API (for validation, etc.)
* Consistency with nested sizes / strides metadata
* Needed for SymInt-ifying offsets metadata
* more TBD

Bonus:
* Remove `_tensor` suffixes from metadata / getter names
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96909
Approved by: https://github.com/drisspg
2023-03-21 18:51:35 +00:00
Driss Guessous
a269e5fa04 Add forward and backward support for silu to NestedTensors (#97181)
# Summary
Add forward and backward support for silu to NestedTensors
- Add forward support to silu
- Add forward support to silu_
- Add backward support to silu
- Add to NT docs
- Add tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97181
Approved by: https://github.com/cpuhrsch, https://github.com/jbschlosser
2023-03-20 23:46:12 +00:00
Driss Guessous
5612aa6acd Fixes a layer_norm_nested backwards edge case. (#96788)
# Summary
Add Test and the fix for when input NT doesn't require grad to layernorm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96788
Approved by: https://github.com/cpuhrsch
2023-03-15 17:16:13 +00:00
Joel Schlosser
30d56dd8c1 Support randn_like() for NT (#96528)
To satisfy an internal ask.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96528
Approved by: https://github.com/mikaylagawarecki, https://github.com/cpuhrsch
2023-03-13 19:39:51 +00:00
Joel Schlosser
024ea1a21e Support zeros_like() for NT (#96527)
This is used for the fake tensor fallbacks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96527
Approved by: https://github.com/cpuhrsch
2023-03-13 15:15:08 +00:00
Mikayla Gawarecki
6930f30ccd Small bugfix in nested matmul bmm path head_dim acquisition (#95744)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95744
Approved by: https://github.com/drisspg
2023-03-01 03:27:08 +00:00
Joel Schlosser
68eec90cfd Support elementwise add / mul for [B, *] nested, [B, 1] dense (CUDA only) (#95620)
Small hack to reuse the 3D custom kernel from #88289 for [B, *] nested, [B, 1] dense elementwise add / mul. Simply treat the inputs as [B, *, 1], [B, 1, 1]. This is added to satisfy an internal ask.

Future work: full general broadcasting support between mixed nested / dense.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95620
Approved by: https://github.com/cpuhrsch, https://github.com/drisspg
2023-02-27 21:07:09 +00:00
Huy Do
9b7abc4fac Run slow gradcheck tests sequentially (#95494)
Also redo https://github.com/pytorch/pytorch/pull/95246 as there are many more still run OOM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95494
Approved by: https://github.com/clee2000
2023-02-26 00:44:25 +00:00
Driss Guessous
0d7913c9c1 add backwards for layer norm nested (#94781)
Fixes #94702

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94781
Approved by: https://github.com/cpuhrsch
2023-02-16 01:42:57 +00:00
Driss Guessous
63bf7674fa add backwards for gelu and relu on nested tensors. (#94776)
Fixes #94701

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94776
Approved by: https://github.com/cpuhrsch
2023-02-14 18:42:06 +00:00
Mikayla Gawarecki
c7c7238976 Fix bug in unsqueeze_nested stride calculation (#88688)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88688
Approved by: https://github.com/cpuhrsch
2023-02-10 17:00:04 +00:00
Driss Guessous
bef2483ed8 [NestedTensor] Call contiguous in linear backward (#94317)
Fixes #94303

If in upward grad for linear_backward was discontiguous we would throw a torch check. This updates the implementation to instead call contiguous and changes the check to an internal assert.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94317
Approved by: https://github.com/mikaylagawarecki
2023-02-07 23:43:46 +00:00
Driss Guessous
df14650f0b [SDPA] Update SDPA API and make function Public (#92189)
# Summary
In preparation for pt 2.0 launch this PR updates SDPA's API and makes the function a nn.funcitonal public function.

## Changes
### API
Previously the the function signature was:
`scaled_dot_product_attention(query, key, value, attn_mask=None, need_attn_weights=False, dropout_p=0.0, is_causal=False) -> (Tensor, Tensor)`
Updated signature:
`scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False) -> Tensor`

This PR removes the need_attn_weights optional boolean variable and updates the return type to a singular tensor.

#### Reasoning:
The main goal of this function is to provide an easy interface for users to call into fused attention kernels e.g.  (FlashAttention). The fused kernels do not currently support arbitrary attn_mask or dropout but there is a PR to mem-efficient attention to enable these. We want to have the API surface ready for when the backing kernels get updated.

The fused kernels save on memory usage by not materializing the weights and it is unlikely that a fast fused implementation will enable this feature so we are removing.

Discussed with folks at FAIR/Xformers and +1 this API change.

#### Make function Public
In preparation for the pt 2.0 launch we make the function public to start to generate user feedback

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92189
Approved by: https://github.com/cpuhrsch
2023-01-23 20:50:46 +00:00
Mikayla Gawarecki
5848704ef8 Removed unecessary check in select_nested (#89150)
Implementation in  #88585 should work for all dimensions. Removed unnecessary check that constrained select to dims 0 and 1

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89150
Approved by: https://github.com/cpuhrsch
2022-11-16 22:11:37 +00:00
Antoni Viros i Martin
9f58e027a9 Add implementation for irregular dimension selection for nested tensors. (#88585)
Summary: This diff modifies the implementation of the select operator so slices of the irregular dimension can be selected (e.g. nt[:,0,:]).

Test Plan:
Added new unit tests to test that the new functions work as intended (see them in diff). To test,
`buck test mode/dev-nosan //caffe2/test:nested`

Differential Revision: D41083993

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88585
Approved by: https://github.com/cpuhrsch
2022-11-09 00:19:38 +00:00
Antoni Viros i Martin
c77368d416 Implement a constructor for nested_tensor that is similar to torch.tensor() (#88213)
Summary: This diff merges both previous implementations of constructors for nested tensors, the one from lists of tensors and the one with arbitrary python lists, adn implements it in pytorch core so no extensions are needed to construct NT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88213
Approved by: https://github.com/cpuhrsch
2022-11-08 00:03:18 +00:00
Christian Puhrsch
5e6ceebccb Add support for neg to NestedTensor (#88131)
Partially fixes #86889

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88131
Approved by: https://github.com/drisspg
2022-11-03 15:15:57 +00:00
Mikayla Gawarecki
d979caa87c Added add/mul for nested dense [B, *, D], [B, 1, D] case (CUDA-only) (#88289)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88289
Approved by: https://github.com/cpuhrsch
2022-11-03 01:29:25 +00:00
Christian Puhrsch
943b20e7ae Use tensor cores for NT bmm (#86856)
Copy of internal diff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86856
Approved by: https://github.com/drisspg
2022-11-02 21:51:40 +00:00
PyTorch MergeBot
99c07735e4 Revert "Add support for neg to NestedTensor (#88131)"
This reverts commit 6a75a0d1a1.

Reverted https://github.com/pytorch/pytorch/pull/88131 on behalf of https://github.com/mehtanirav due to [Internal breakages](https://www.internalfb.com/intern/sandcastle/job/13510799692239080/insights)
2022-11-02 18:43:36 +00:00
Driss Guessous
560786ac20 call contiguous on BMM inputs for NT on CUDA (#88108)
Fixes #87713

BMM for cpu supports  non-contiguous nested tensor inputs, while BMM for Cuda does not support currently non-contiguous inputs.

The derivative for BMM:
```
- name: bmm(Tensor self, Tensor mat2) -> Tensor
  self: grad.bmm(mat2.transpose(1, 2).conj())
  mat2: self.transpose(1, 2).conj().bmm(grad)
  result: self_t.bmm(mat2_p) + self_p.bmm(mat2_t)
```

When calling backward it was impossible for this function to succeed since the inputs were always discontiguous, regardless of the user input.  This adds contiguous calls to BMM_cuda implementation for nested tensors.

This was not caught by tests because grad_check is currently only done on CPU in test_nestedtensors. This PR updates the autograd test to also be run on GPU.

As a result I found one more issue with the backward for to_padded_tensor erroring instead of calling the generic version.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88108
Approved by: https://github.com/cpuhrsch
2022-11-01 03:14:27 +00:00
Christian Puhrsch
6a75a0d1a1 Add support for neg to NestedTensor (#88131)
Partially fixes #86889

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88131
Approved by: https://github.com/drisspg
2022-11-01 02:37:42 +00:00
Christian Puhrsch
b192e7e415 Support non-contiguous NestedTensors for elementwise ops (#87888)
Enables benchmarking of math path of sdp kernel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87888
Approved by: https://github.com/drisspg
2022-10-28 11:26:17 +00:00
Antoni Viros i Martin
775fef51b7 Implement copy_, fill_, and ones_like for Nested Tensors backends (#87728)
Summary: This diff implements copy_ in order to allow pinned memory transfers for nested tensors, as well as fill_ and ones_like, to test whether nested tensors can be created with other factory functions.

Test Plan: Pass all CI and sandcastle jobs.

Reviewed By: mikekgfb

Differential Revision: D40689594

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87728
Approved by: https://github.com/cpuhrsch
2022-10-26 14:48:27 +00:00
Antoni Viros i Martin
d94e33f041 Add support for .to() for NestedTensor backends (#87146)
Summary: This commit adds support for moving NestedTensors from CPU to GPU and back. The implementation includes requires implementing empty_like(), which is based on PR#83140.

Test Plan: Added a new unit test based on the unit test for the main .to() implementation. All unit tests must pass, as well as every sandcastle job.

Differential Revision: D40437585

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87146
Approved by: https://github.com/drisspg
2022-10-20 03:46:50 +00:00