Commit Graph

345 Commits

Author SHA1 Message Date
eellison
29fe90e2a2
[release/1.6] [JIT] Dont include view ops in autodiff graphs (#42029)
* Dont include view ops in autodiff graphs

* skip view ops in autodiff testing

* two more tests

* appease calng format

* Pacify clang-format

Co-authored-by: eellison <eellison@fb.com>
Co-authored-by: Nikita Shulga <nikita.shulga@gmail.com>
2020-07-24 13:41:32 -07:00
mcarilli
eaf3f2fd34
Added index_put to promotelist (#41036)
* Added index_put to promotelist

* docstring

Co-authored-by: Michael Carilli <mcarilli@nvidia.com>
2020-07-07 13:00:32 -07:00
Mike Ruberry
ddea6c552f
Ports full dtype inference deprecation to 1.6 (#40799)
* ports full deprecation

* fixtures

* Fixes lint

* Trying to fix phantom lint issue

* nuclear lint option

* Paradoxical linter fix

Co-authored-by: Mike Ruberry <mruberry@devfair044.maas>
2020-07-01 09:27:27 -07:00
mrshenli
4316199832
Add examples and tests for combining static/class method with async execution (#40619) (#40688)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40619

Test Plan: Imported from OSS

Differential Revision: D22258407

Pulled By: mrshenli

fbshipit-source-id: 036d85a2affc4505efd2df197fc513dba010e359
2020-06-29 19:34:23 -07:00
Pritam Damania
54c05fa34e Add basic GPU support to distributed autograd. (#40312)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40312

As part of https://github.com/pytorch/pytorch/issues/40255, we
realized that GPU support for distributed autograd was broken as part of our
multithreaded autograd change.

To fix this in the short term for 1.6, this PR includes the following changes:

1) Long lived CPU thread in DistEngine to execute GPU->CPU continuations in the
autograd graph.
2) The long lived CPU thread has its own ready_queue and this queue is used for
all GraphTasks created by DistEngine.
3) In thread_main(), the CPU thread cannot exit once the GraphTask is done
processing because of the new CPU thread added in 1).
4) To resolve this, thread_main() now has a parameter `device_thread` instead
of `reentrant_thread`. When device_thread is True, we expect this to be a long
lived device thread that does not exit.
5) When device_thread is False, thread_main is expected to run a GraphTask and
return once done.
ghstack-source-id: 106391329

Test Plan: waitforbuildbot

Differential Revision: D22146183

fbshipit-source-id: dd146b7a95f55db75f6767889b7255e9d62d5825
2020-06-23 07:49:00 -07:00
Jerry Zhang
64f925eb0c [quant][graphmode] Add support for functional linear (#40331)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40331

Test Plan: Imported from OSS

Differential Revision: D22162905

fbshipit-source-id: 3e0320d5f5c267c778af8e2fe4224f8383aab2c8
2020-06-22 18:05:06 -07:00
Vasiliy Kuznetsov
b02c932fb6 qat eager: remove unneeded modules (#40396)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40396

Removes activation and normalization modules from eager mode QAT.
These were incorrectly added, but we don't actually need them.

Test Plan:
```
python test/test_quantization.py TestQuantizationAwareTraining
```

Imported from OSS

Differential Revision: D22169768

fbshipit-source-id: b5bd753dafe92e90e226fb773eb18c6aae179703
2020-06-22 17:45:51 -07:00
Raghuraman Krishnamoorthi
d7d75e37bb Add state dict for LSTM and RNNCell and helper functions for accessing weights and bias (#40333)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40333

Add state_dict support for dynamic quantized LSTM/GRU/RNNCell.

Add helper functions get_weight and get_bias for LSTM and RNNCells
ghstack-source-id: 106364749

(Note: this ignores all push blocking failures!)

Test Plan:
buck test caffe2/test:quantization -- 'test_lstm_api \(quantization\.test_quantized_module\.TestDynamicQuantizedModule\)' --print-passing-details

buck test caffe2/test:quantization -- 'test_cell_api \(quantization\.test_quantized_module\.TestDynamicQuantizedModule\)' --print-passing-details

Differential Revision: D22151020

fbshipit-source-id: 2eb54062f6c6a35ffe4dbe8e8cfbf7ede0e92ba1
2020-06-22 17:41:07 -07:00
Rohan Varma
14f7e95c1a Add prefix of remote events for RPC profiling (#40066)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40066

Builds on top of the previous PR to ensure that all remotely profiled events are prefixed with the key for the RPC that generated them.

The key is generated by the result of `_build_rpc_profiling_key` in `rpc/internal.py` and prefixed onto the event name. In order to do this, we set the current-key when creating the RPC in Python, retrieve the currently-set key in C++ and save a GloballyUniqueId -> key mapping to an in-memory map. When we receive an RPC with profiling information, we expect to receive this ID back, and look up the corresponding profiling key in the map.

The key is then added to all the remote events.

Tested by adding tests to ensure the key is added to all the remote events. Also added a UT which tests in under the multi-threading scenario, to ensure that the mapping's correctness is maintained when several RPCs are in the process of being created at once.
ghstack-source-id: 106316106

Test Plan: Unit test

Differential Revision: D22040035

fbshipit-source-id: 9215feb06084b294edbfa6e03385e13c1d730c43
2020-06-22 11:01:07 -07:00
Vasiliy Kuznetsov
ab8a99bd36 graph mode: add hardswish inplace handling (#40284)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40284

Adds graph mode handling for inplace hardswish, and test coverage for functional hardswish.

Test Plan:
```
python test/test_quantization.py TestQuantizeScriptPTSQOps.test_hardswish
```

Imported from OSS

Differential Revision: D22140628

fbshipit-source-id: 55a514f7dc1130d510f69ee4e611d7cb5e08d02e
2020-06-21 09:40:50 -07:00
Vasiliy Kuznetsov
cd0afe2b8e quantized elu: eager mode QAT handling (#40104)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40104

Adds eager mode QAT handling for quantized ELU.

Test Plan:
```
python test/test_quantization.py TestQuantizationAwareTraining.test_activations
```

Imported from OSS

Differential Revision: D22075082

fbshipit-source-id: 90eb06e4c52ec542fda97d7ee108a38465d3e845
2020-06-21 09:40:46 -07:00
Vasiliy Kuznetsov
03ed802a90 quantized elu: eager mode static handling (#40103)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40103

Add eager mode static quantization handling for quantized ELU.

Test Plan:
```
python test/test_quantization.py TestStaticQuantizedModule.test_elu
python test/test_quantization.py TestPostTrainingStatic.test_activations
```

Imported from OSS

Differential Revision: D22075081

fbshipit-source-id: 8a3df428be135a0565472ebd0f55fa801689bcc5
2020-06-21 09:40:44 -07:00
Pritam Damania
e632bf8d57 Add thrift and tensorpipe backend tests for test_ddp_under_dist_autograd. (#40210)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40210

ghstack-source-id: 106300839

Test Plan: waitforbuildbot

Differential Revision: D22110065

fbshipit-source-id: d9ebd009b8d451c75708eadc7eb3f2b788e875aa
2020-06-20 22:59:59 -07:00
Haixin Liu
4cbf87dc92 [PyTorch Numeric Suite] Add support for dynamic LSTM (#40065)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40065

Add support for dynamic LSTM of all three Numeric Suite APIs: compare_weights(), compare_model_stub() and compare_model_outputs().
ghstack-source-id: 106291782

Test Plan:
buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_lstm_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_lstm_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_lstm_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_submodule_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_functional_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_functional_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_dynamic'

Differential Revision: D22058275

fbshipit-source-id: 76cb42ce16b6b02b0b90f7582252756582660921
2020-06-20 07:00:13 -07:00
Zafar
9da277c635 [quant][graphmodel] linear_relu (#40021)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40021

This replaces #36889 due to significant merge conflicts

Test Plan: Imported from OSS

Differential Revision: D22087061

Pulled By: z-a-f

fbshipit-source-id: 6a65cdd3c0c0c957968a9d017902fb6d03b58150
2020-06-19 23:32:54 -07:00
Mike Ruberry
4f761f325c Back out "[pytorch][PR] Removes dunder div"
Summary: NVIDIA's Apex is updating to no longer rely on this behavior, but we're reverting this Python2->Python3 update to unblock internal apex users.

Test Plan: Sandcaslte + OSS CI.

Reviewed By: ngimel

Differential Revision: D22146782

fbshipit-source-id: f9483d2cbf9dc3a469ad48a6c863edea3ae51070
2020-06-19 18:31:20 -07:00
Jerry Zhang
b2f489dc57 [quant][graphmode] Rename graph mode quantization API to quantize_jit (#40212)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40212

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D22144745

fbshipit-source-id: 38a19b5afdddbbce262eea8ddf5b68458e6017b3
2020-06-19 18:13:37 -07:00
Shen Li
4463f59c2c Let torch.futures.wait_all re-throw errors (#40291)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40291

Test Plan: Imported from OSS

Differential Revision: D22141702

Pulled By: mrshenli

fbshipit-source-id: 50b5e5c687e87930aef3a50cc40839729a4eb9c6
2020-06-19 15:32:56 -07:00
Nikita Shulga
6df97c20c2 Make test case precision property (#40057)
Summary:
Make `common_utils.TestCase.precision` a property, because it is overriden as such in `common_device_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40057

Differential Revision: D22138385

Pulled By: malfet

fbshipit-source-id: 0e7c14654bf60f18f585efc61f96fdd0af23346f
2020-06-19 14:24:55 -07:00
Edmund Williams Jr
465138ec39 refactoring TestQuantizeScript (#39677)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39677

Test Plan:
Moved a test class suite between files, wanted to have same functionality (simple code refactor) so tested to make sure the test output was the same before/after the refactor.
Image below shows the output of TestGraphModePostTrainingStatic before refactor

{F239676498}

This image shows the output of TestQuantizeScript (renamed version that is in test_quantize_script.py instead of test_quantize.py)

{F239676509}

Differential Revision: D21940638

Pulled By: edmundw314

fbshipit-source-id: 54160a5151aadf3a34bdac2bcaeb52904e6653ed
2020-06-19 11:47:00 -07:00
Haixin Liu
d9c804ce22 [PyTorch Numeric Suite] Add support for dynamic quantization of linear module (#39024)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39024

Add support for dynamic quantization of linear module.
ghstack-source-id: 106205450

Test Plan:
buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_submodule_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_functional_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_dynamic'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_conv_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_functional_static'

buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_dynamic'

Differential Revision: D21675971

fbshipit-source-id: c9562744dc59b61cf47f2787a934e6a5a53e12fd
2020-06-19 10:58:56 -07:00
Rohan Varma
7e82382ad5 Allow profiler to be enabled remotely with RPC (#38748)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38748

This diff contains the message scaffolding and profiler changes in order to be able to remotely run the profiler across different nodes and aggregate the results on a single node.

As discussed, we have implemented this by creating new message types, that similar to autograd messages, wrap the profiling information with the original message, and send this new message over the wire. On the receiving end, this wrapped message is detected, we fetch the original message from it, and process the original message with the profiler enabled. When sending a response with profiling information, we serialize the profiled `Events` and send them back over RPC. When such a message is received, the events profiled on the remote node are stored (added back to the local profiler).

Changes in this PR:
- New message types (run_with_profiling_req, run_with_profiling_resp) to send profiling info over the wire. Message parsing logic is added to handle these wrapped types.
- Handling of sending profiler data over the wire, in particular, the attributes of the `ProfilerConfig` and the serialized profiled `Event`s
- The logic for wrapping RPC messages is deduped with that in `rpc_with_autograd`, and the common payload wrapping/unwrapping logic is moved to helper functions in `rpc/utils.cpp`
- Changes in `autograd/utils.cpp` to detect if we have enabled the profiler and are sending an RPC, if so, uses the above new message types
- Changes in request_callback to parse and turn on the profiler in a thread-local fashion
- Serialization and deserialization of profiling `Events`, and support to add the remote events to the thread-local profiler
- Introduction of the concept of `node_id`, which as discussed with ilia-cher , will be used along with the `Event`s handle attribute to distinguish between events. When there are events from different nodes, this node information is rendered in the profile output (e.g. when printing tables), otherwise, it is not, since it is irrelevant.
- Some changes to profiler.cpp to add useful helper methods/guards
- toHere() is now profiled for RRefs
- Unittests
ghstack-source-id: 106134626

Test Plan: Added unittests, existing profiler unittests.

Differential Revision: D19510010

fbshipit-source-id: 044347af992f19a9e3b357c9567f6fc73e988157
2020-06-18 17:01:57 -07:00
Vasiliy Kuznetsov
4ad8ebe738 quant layer/group/instance norm: make weights and biases optional (#39203)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39203

Adds logic and test coverage for optional weights and biases for
the quantized normalization operators.  This was broken before this
PR because the `TORCH_LIBRARY` registration had these as required parameters
- removed it, and cleaned up the callsites.

Note: consolidating the registrations in `native_functions.yaml` as opposed to `library.cpp`
after a discussion with ezyang .

Test Plan:
```
python test/test_quantization.py TestQuantizedOps.test_qlayer_norm
python test/test_quantization.py TestQuantizedOps.test_group_norm
python test/test_quantization.py TestQuantizedOps.test_instance_norm
python test/test_quantization.py TestStaticQuantizedModule.test_layer_norm
python test/test_quantization.py TestStaticQuantizedModule.test_group_norm
python test/test_quantization.py TestStaticQuantizedModule.test_instance_norm
python test/test_quantization.py TestQuantizeScriptPTSQOps.test_layer_norm
python test/test_quantization.py TestQuantizeScriptPTSQOps.test_group_norm
python test/test_quantization.py TestQuantizeScriptPTSQOps.test_instance_norm
```

Imported from OSS

Differential Revision: D21885259

fbshipit-source-id: 978c7b8bd6c11a03e9e5fdb68f154cb80cc43599
2020-06-18 10:19:39 -07:00
Shihao Xu
f3f30d4354 [JIT x RPC] Consolidate RRef type class and RRef impl class (#35694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35694

close https://github.com/pytorch/pytorch/issues/35110

Differential Revision: D7881729

fbshipit-source-id: eedda8f1b7510491886d469efeed4e002bb8b991
2020-06-18 07:46:38 -07:00
Luca Wehrstedt
7c9e78fdf5 [TensorPipe] Add options for agent, including backend killswitches (#40162)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40162

The only public option is `num_worker_threads`. The other ones are private (as indicated by the leading underscore, is that enough?) and allow to specify a different set and order of transports/channels. These can thus be used to disable a backend (by not specifying it) or by forcing one (by raising its priority). They can therefore be used to work around defective backends, in case we'll find any post-release.
ghstack-source-id: 106103238

Test Plan: Built //caffe2:ifbpy and, using TensorPipe's verbose logging, verified that the transports/channels I specified were indeed the ones that were being registered.

Differential Revision: D22090661

fbshipit-source-id: 789bbe3bde4444cfa20c40276246e4ab67c50cd0
2020-06-18 02:54:17 -07:00
Wanchao Liang
27d789500b [test] split tracer related tests out of test_jit (#40142)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40142

test_jit is becoming huge again, which makes editor hard to load and
write new tests, this split out the tracer related tests.

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22085035

Pulled By: wanchaol

fbshipit-source-id: 696bee84985ecfbfeac8e2ee5c27f1bdda8de394
2020-06-17 17:26:33 -07:00
Rohan Varma
f4ffe99da5 Fix flaky rref timeout test (#40141)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40141

This rref timeout test could be flaky because we could end up processing `RRefUserDelete` messages on the owner node before processing the to_here message. This would result in a hang in `ProcessGroupAgent::sync()` that eventually results in a timeout.

The rough sequence of what happens is:
0) Node 0 creates RRef on node 1 with rpc.remote() call
1) rref.to_here() is called with a timeout. Because of delay injection, the processing of this message can be delayed (this is also technically possible in applications without delay injection)
2) At some point, callbacks corresponding to rpc.remote() runs and confirms the rref, adding it as a confirmed user
3) RPC shutdown starts, as part of which we send out RRef user deletes. In this case, 0 sends an RRef user delete to 1, and node 1 removes the owner from the `owners_` field.
4) The `to_here()` message is finally processed by node 1. But since we have deleted the `owner_`, while processing this message we create a future that will be complete when the owner exists (this is to account for the case of to_here() arriving here rpc.remote). But this future will never complete, since the owner is already deleted, so we hang indefnitely

As a workaround for now, we can force `to_here()` to run before RPC shutdown by adding a blocking `to_here()` call with no timeout.

A more robust, longer-term fix would be to detect if an owner has been previously deleted (such as by an RRefUserDelete). Then, we know that the future corresponding to owner creation on the remote end will never completee, and then we error out when processing a `to_here()`.
ghstack-source-id: 106036796

Differential Revision: D22084735

fbshipit-source-id: fe7265a4fe201c4d6d2f480f64fe085cd59dbfb2
2020-06-17 15:48:38 -07:00
Supriya Rao
c252dddcdd [quant][graphmode] Test JIT tracing for dynamic quant cases (#40128)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40128

Reland PR

Test Plan:
python test/test_quantization.py TestQuantizeDynamicScriptJitPasses

Imported from OSS

Differential Revision: D22081258

fbshipit-source-id: a3f7e26ea02ff8946f356afa7203129c6b3d658b
2020-06-17 13:41:56 -07:00
Luca Wehrstedt
c958dd5472 [TensorPipe] Add guards against transferring GPU tensors (#40167)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40167

In v1.6 TensorPipe will not support transferring GPU tensors so, just like other agents, it should raise the appropriate errors when the user attempts to do so. One such error is when sending the arguments, another is when sending the result.
ghstack-source-id: 106059723

Test Plan: Re-enabled the test for this

Differential Revision: D22091737

fbshipit-source-id: 23dda98bc006333c6179361e8cfaf00ecda06408
2020-06-17 10:51:22 -07:00
Mike Ruberry
9d588f7ce2 Removes dunder div (#39151)
Summary:
BC-breaking note:

If a user is using one of these dunders directly they will not longer be available. Users should update to Python3 compatible dunders.

Original PR note:

`__div__` (and `__idiv__` and `__rdiv__`) are no longer special dunders in Python3. This PR replaces them with the `__truediv__` (`__itrudediv__`, `__rtruediv__`) dunders, since we no longer support Python2.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39151

Differential Revision: D22075713

Pulled By: mruberry

fbshipit-source-id: d318b47b51f7cc4c3728b1606a34d81e49ba0fa1
2020-06-16 23:02:20 -07:00
Raghuraman Krishnamoorthi
3258cb61b1 Dynamic quantization support for LSTMCell, RNNCell and GRUCell [Remove randomness in weights] (#40102)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40102

Enable dynamic quantization for LSTMCell, RNNCell and GRUCell
ghstack-source-id: 105997236

(Note: this ignores all push blocking failures!)

Test Plan: buck test caffe2/test:quantization -- 'test_quantized_rnn_cell \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

Differential Revision: D22071017

fbshipit-source-id: 3fe1eac39db9c1e0566838eb8b969bbb1fa983c9
2020-06-16 21:29:50 -07:00
Raghuraman Krishnamoorthi
15758bca55 Refactor LSTM tests, [Remove randomness in weights] (#40101)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40101

Create three tests for LSTMs:
1. test_qlstm: Test to check numerics of quantized LSTM operator.
2. test_lstm_api: To check the LSTM module and compare
it with the quantized LSTM op
3. test_quantized_rnn: Check the dynamic quantization workflow, scriptability and serialization of quantized
LSTM
ghstack-source-id: 105997268

(Note: this ignores all push blocking failures!)

Test Plan:
buck test caffe2/test:quantization -- 'test_lstm_api \(quantization\.test_quantized_module\.TestDynamicQuantizedModule\)' --print-passing-details

buck test caffe2/test:quantization -- 'test_quantized_rnn \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

buck test caffe2/test:quantization -- 'test_qlstm \(quantization\.test_quantized_op\.TestDynamicQuantizedRNNOp\)' --print-passing-details

Differential Revision: D22070826

fbshipit-source-id: 46c333e19b9eab8fa5cab6f132e89b80a635791a
2020-06-16 17:24:07 -07:00
Supriya Rao
cb1a1942ee Revert D22071277: [quant][graphmode] Test JIT tracing for dynamic quant cases
Test Plan: revert-hammer

Differential Revision:
D22071277

Original commit changeset: e8aa8637e636

fbshipit-source-id: e89c3e03a7d695e1d4f5ff8d8c5172633db83984
2020-06-16 14:59:09 -07:00
Supriya Rao
fa4244d783 [quant][graphmode] Test JIT tracing for dynamic quant cases (#40040)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40040

Test Plan:
python test/test_quantization.py TestQuantizeDynamicScriptJitPasses

Imported from OSS

Differential Revision: D22071277

fbshipit-source-id: e8aa8637e6364092b6ff1c3a48dfc4551eb645ec
2020-06-16 13:16:42 -07:00
Pritam Damania
145df306ae Avoid using default process group in ProcessGroupAgent. (#39909)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39909

As described in https://github.com/pytorch/pytorch/issues/33583,
ProcessGroupAgent initializes the default process group and this causes issues
if the user initializes the default process group themsleves. Either the RPC
initialization would fail or the user's process group initialization would
fail.

To avoid this, I've changed ProcessGroupAgent init to create its own
ProcessGroupGloo and not use the default one at all.

Closes: https://github.com/pytorch/pytorch/issues/33583
ghstack-source-id: 105953303

Test Plan: waitforbuildbot

Differential Revision: D22011868

fbshipit-source-id: 7346a3fcb2821a0bc08e0bdc0625947abb5ae16f
2020-06-16 12:00:29 -07:00
Raghuraman Krishnamoorthi
5add2e861c Revert D21628596: Refactor LSTM tests
Test Plan: revert-hammer

Differential Revision:
D21628596

Original commit changeset: 4aeda899f2e5

fbshipit-source-id: ab6544b87404863e054172aa9ec7ada51fad8e5e
2020-06-16 10:14:15 -07:00
Raghuraman Krishnamoorthi
e55e0cb1a9 Revert D20978736: Dynamic quantization support for LSTMCell, RNNCell and GRUCell
Test Plan: revert-hammer

Differential Revision:
D20978736

Original commit changeset: 8f303ba1d7f8

fbshipit-source-id: bcd300819616d6536f582fcd3c90decd543c4657
2020-06-16 10:11:32 -07:00
Raghuraman Krishnamoorthi
48db06e39a Dynamic quantization support for LSTMCell, RNNCell and GRUCell (#37159)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37159

Enable dynamic quantization for LSTMCell, RNNCell and GRUCell
ghstack-source-id: 105946183

(Note: this ignores all push blocking failures!)

Test Plan: buck test caffe2/test:quantization -- 'test_quantized_rnn_cell \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

Differential Revision: D20978736

fbshipit-source-id: 8f303ba1d7f8e0c646ac73e862d2c1e735b7ff61
2020-06-16 09:14:59 -07:00
Mike Ruberry
ebd869153c Clarifies compare_with_numpy behavior (#40064)
Summary:
Currently compare_with_numpy requires a device and dtype, but these arguments are ignored if a tensor is provided. This PR updates the function to only take device and dtype if a tensor-like object is given. This should prevent confusion that you could, for example, pass a CPU float tensor but provided a CUDA device and integer dtype.

Several tests are updated to reflect this behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40064

Differential Revision: D22058072

Pulled By: mruberry

fbshipit-source-id: b494bb759855977ce45b79ed3ffb0319a21c324c
2020-06-16 05:01:33 -07:00
Jerry Zhang
144e8dc5a3 [quant][graphmode] Use quantizedbatch_norm in graph mode (#39911)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39911

Test Plan: Imported from OSS

Differential Revision: D22012282

fbshipit-source-id: 98af55172cbeaa7080865d6533df21647a7cedfa
2020-06-16 00:58:11 -07:00
Raghuraman Krishnamoorthi
655f1ea176 Refactor LSTM tests (#38851)
Summary:
Create three tests for LSTMs:
1. test_qlstm: Test to check numerics of quantized LSTM operator.
2. test_lstm_api: To check the LSTM module and compare
it with the quantized LSTM op
3. test_quantized_rnn: Check the dynamic quantization workflow, scriptability and serialization of quantized
LSTM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38851

ghstack-source-id: 105945574

(Note: this ignores all push blocking failures!)

Test Plan:
buck test caffe2/test:quantization -- 'test_lstm_api \(quantization\.test_quantized_module\.TestDynamicQuantizedModule\)' --print-passing-details

buck test caffe2/test:quantization -- 'test_quantized_rnn \(quantization\.test_quantize\.TestPostTrainingDynamic\)'

buck test caffe2/test:quantization -- 'test_qlstm \(quantization\.test_quantized_op\.TestDynamicQuantizedRNNOp\)' --print-passing-details

Differential Revision: D21628596

fbshipit-source-id: 4aeda899f2e5f14bfbe3d82096cb4ce89c725fa1
2020-06-16 00:41:24 -07:00
Shihao Xu
00651b8c93 [distribtued.nn] Implement TorchScript-compatible RemoteModule API (#37139)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37139

See design doc in https://github.com/pytorch/pytorch/issues/37136

ghstack-source-id: 105926270

Test Plan:
TODO:

- Make the generated Interface usable. https://github.com/pytorch/pytorch/pull/37139#discussion_r434190978
-
- Avoid generating the same template instances for Module that is not scriptable.
- Remove "infer_module_interface_cls".
- Use Python format instead of a CodeTemplate
- Use Python tempfile to track and delete file. Does it work if there is crash.

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_scripted_remote_module_template

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_non_scripted_remote_module_template
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_spawn
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_async_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_sync_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_with_kwargs

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name
```

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork
```

buck test mode/opt-asan //caffe2/test:jit -- 'test_script_forward_method_replacement

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_script_forward_method_replacement'

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_imported_classes'

Differential Revision: D20499658

fbshipit-source-id: dd9383ae4eb2343366c11127664f845b91ca3b0a
2020-06-15 19:07:35 -07:00
Jeremy Lilley
0c25428597 [futures] Reland: Add torch.futures.collect_all()/wait_all() python api. (#39964)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39964

The "[fut.wait() for fut in futs]" idiom can introduce up to
O(len(futs)) thread switches, which may be excessive for large N.

This plumbs through the new c++ c10::collectAll() to Python space
so that we only employ a single jit-side wait.

Test Plan: buck test mode/dev-nosan caffe2/test/distributed/rpc:rpc_spawn

Differential Revision: D22027412

fbshipit-source-id: 4e344a19a09638ee46e7fc478df80a41941b84ce
2020-06-15 14:07:12 -07:00
Nikita Shulga
c6b69a4e4d Delete Python <= 3.5 specific checks from the code (#39879)
Summary:
Remove PY3 and PY34 checks from `torch/testing/_internal/common_utils.py`
 Remove PY35 global var from `torch.jit.annotations`
Always call `try_get_real_signature` in `torch/jit/annotations.py`
Use `map` instead of `imap`, since Python-2 is no longer support, so map is always lazy.
Remove all pre Python-3.6 checks from `torch/_six.py` and `torch/_appdirs.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39879

Differential Revision: D22037811

Pulled By: malfet

fbshipit-source-id: af0c79f976569c2059d39ecb49c6b8285161734f
2020-06-15 08:16:06 -07:00
Shihao Xu
b803b4ce09 [torch.distributed.rpc] Add stringify WorkerInfo, better error message for py_rref (#39974)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39974

# Problem

When this assertion happens, I don't know
- which worker_id it is on, even with the worker_name "trainer:0".
- which rref is throwing this exception.

```shell
  File "/mnt/xarfuse/uid-213229/96b122e4-seed-df64b884-e2b4-4520-b7a8-777e79c829ac-ns-4026532900/caffe2/torch/fb/training_toolkit/backend/training_strategies/parameter_server_strategy.py", line 246, in _initialize_trainers
    trainer_name: fut.wait() for trainer_name, fut in model_rref_futs.items()
  File "/mnt/xarfuse/uid-213229/96b122e4-seed-df64b884-e2b4-4520-b7a8-777e79c829ac-ns-4026532900/caffe2/torch/fb/training_toolkit/backend/training_strategies/parameter_server_strategy.py", line 246, in <dictcomp>
    trainer_name: fut.wait() for trainer_name, fut in model_rref_futs.items()
  File "/mnt/xarfuse/uid-213229/96b122e4-seed-df64b884-e2b4-4520-b7a8-777e79c829ac-ns-4026532900/torch/distributed/rpc/internal.py", line 158, in _handle_exception
    raise result.exception_type(result.msg)
RuntimeError: RuntimeError('Cannot call localValue() on a non-local reference. Call it on trainer:0')
Traceback (most recent call last):
  File "/mnt/xarfuse/uid-213229/96b122e4-seed-21bc7792-3714-4e62-a1c1-32a7c38ed984-ns-4026533058/torch/distributed/rpc/internal.py", line 148, in _run_function
    result = python_udf.func(*python_udf.args, **python_udf.kwargs)
  File "/mnt/xarfuse/uid-213229/96b122e4-seed-21bc7792-3714-4e62-a1c1-32a7c38ed984-ns-4026533058/torch/distributed/rpc/rref_proxy.py", line 5, in _local_invoke
    return getattr(rref.local_value(), func_name)(*args, **kwargs)
RuntimeError: Cannot call localValue() on a non-local reference. Call it on trainer:0
```

Changes,
- Add stringify WorkerInfo
- Make localValue() assertion message clearer about the case.
ghstack-source-id: 105840918

Test Plan:
buck test mode/dev-nosan //caffe2/test/distributed/rpc/:rpc_fork -- test_local_value_not_on_owner

buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit/:rpc_fork

Reviewed By: mrshenli

Differential Revision: D5690653

fbshipit-source-id: ca6a8b1ff6e09f8644303a0f82f9b1a546a11170
2020-06-13 12:57:05 -07:00
Wanchao Liang
34d1098dc2 [rpc] fix RRef alias annotation (#39933)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39933

Fix rref related alias annotation to ensure it's not getting ebased by
the jit dce.

Test Plan: Imported from OSS

Differential Revision: D22015426

Pulled By: wanchaol

fbshipit-source-id: 3e74d49fa9f88abaf662bde7be5284f01f621b98
2020-06-12 17:17:48 -07:00
Mike Ruberry
8bc821f0d0 Revert D21976891: [futures] Add torch.futures.collect_all()/wait_all() python api.
Test Plan: revert-hammer

Differential Revision:
D21976891

Original commit changeset: 253c61f503f4

fbshipit-source-id: f839b16f4469e96325b607b6313a1397e1988856
2020-06-12 13:40:37 -07:00
Jeremy Lilley
a9aa6367c2 [futures] Add torch.futures.collect_all()/wait_all() python api. (#39790)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39790

The "[fut.wait() for fut in futs]" idiom can introduce up to
O(len(futs)) thread switches, which may be excessive for large N.

This plumbs through the new c++ c10::collectAll() to Python space
so that we only employ a single jit-side wait.
ghstack-source-id: 105779443

Test Plan: buck test mode/dev-nosan caffe2/test/distributed/rpc:rpc_spawn

Reviewed By: kiukchung

Differential Revision: D21976891

fbshipit-source-id: 253c61f503f4ffb9be784e6c49a0656cede139fb
2020-06-12 12:36:04 -07:00
Jerry Zhang
246d7bb41d [quant][graphmode] Quantizing traced modules (#39826)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39826

Expanding operator test coverage to traced modules

Test Plan: Imported from OSS

Differential Revision: D21991266

fbshipit-source-id: 73b1d94caa6ad41bb0d6cbde7ba0de343da3e7ff
2020-06-12 00:55:11 -07:00
Yanan Cao
c068233300 Add CHECK-SOURCE-HIGHLIGHTED to file check utils. (#39692)
Summary:
Enhance FileCheck util to check for highlighted source ranges. This is useful when writing tests regarding generated error messages that require source code highlighting.

Here is how the error looks like in different cases:

- In case of needed source code token not found at all in input string:
```
RuntimeError: Expected to find "invalid_token" but did not find it
Searched string:

...  <--- HERE
def to_list_missing_type_annotation(x):
    # type: (torch.Tensor) -> List[float]
From CHECK-SOURCE-HIGHLIGHTED: invalid_token
```

- In case of source code token not highlighted:
```
Traceback (most recent call last):
  File "test_range.py", line 11, in <module>
    FileCheck().check_source_highlighted("x.tolist()").run(s)
RuntimeError: Expected to find "~~~~~~~~~~" but did not find it
Searched string:
    # type: (torch.Tensor) -> List[float]
    li = x.tolist()
         ~~~~~~~~~ <--- HERE
         ~~~~~~~~~~~~~~~~~~~...  <--- HERE
    return li
```

It is a bit confusing since both input text (usually an error message) and generated error messages have their highlighted portions, but this is consistent of previous behavior. Another option is to generate plain error messages without additional range highlighting on input text.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39692

Test Plan:
Added unit test.

Closes https://github.com/pytorch/pytorch/issues/38698

Differential Revision: D22001765

Pulled By: gmagogsfm

fbshipit-source-id: 6681441eee5853ab061d198ccfe55ebffddca202
2020-06-11 23:47:07 -07:00