Summary:
This PR aims to add `arcosh`, `arcsinh` and `arctanh` support. Please see issue https://github.com/pytorch/pytorch/issues/38349 for more details.
**TODOs:**
* [x] Add test cases for `arcosh`, `arcsinh` and `arctanh`. (need help)
* [x] Overload ops if `std::op` does not work with `thrust::complex` types (like for `sinh`, `cosh`).
Note: `std::acosh, std::asinh, std::atanh` do not support `thrust::complex` types. Added support for complex types for these 3 ops (`arccosh, arcsinh, arctanh`)
cc: mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38388
Differential Revision: D21882055
Pulled By: mruberry
fbshipit-source-id: d334590b47c5a89e491a002c3e41e6ffa89000e3
Summary:
xref gh-32838, gh-34032
This is a major refactor of parts of the documentation to split it up using sphinx's `autosummary` feature which will build out `autofuction` and `autoclass` stub files and link to them. The end result is that the top module pages like torch.nn.rst and torch.rst are now more like table-of-contents to the actual single-class or single-function documentations pages.
Along the way, I modified many of the docstrings to eliminate sphinx warnings when building. I think the only thing I changed from a non-documentation perspective is to add names to `__all__` when adding them to `globals()` in `torch.__init__.py`
I do not know the CI system: are the documentation build artifacts available after the build, so reviewers can preview before merging?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37419
Differential Revision: D21337640
Pulled By: ezyang
fbshipit-source-id: d4ad198780c3ae7a96a9f22651e00ff2d31a0c0f
Summary:
Adds support for generating Vandermonde matrices based off of the Numpy implementation found [here](https://github.com/numpy/numpy/blob/v1.17.0/numpy/lib/twodim_base.py#L475-L563).
Adds test to ensure generated matrix matches expected Numpy implementation. Note test are only limited to torch.long and torch.double due to differences in now PyTorch and Numpy deal with type promotion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36725
Differential Revision: D21075138
Pulled By: jessebrizzi
fbshipit-source-id: 6bb1559e8247945714469b0e2b07c6f4d5fd1fd0
Summary:
Previously torch.isclose would RuntimeError when called on complex tensors. This update updates torch.isclose to run on complex tensors and be consistent with [NumPy](https://numpy.org/doc/1.18/reference/generated/numpy.isclose.html). However, NumPy's handling of NaN, -inf, and inf values is odd, so I adopted Python's [cmath.isclose](https://docs.python.org/3/library/cmath.html) behavior when dealing with them. See https://github.com/numpy/numpy/issues/15959 for more on NumPy's behavior.
While implementing complex isclose I also simplified the isclose algorithm to:
- A is close to B if A and B are equal, if equal_nan is true then NaN is equal to NaN
- If A and B are finite, then A is close to B if `abs(a - b) <= (atol + abs(rtol * b))`
This PR also documents torch.isclose, since it was undocumented, and adds multiple tests for its behavior to test_torch.py since it had no dedicated tests.
The PR leaves equal_nan=True with complex inputs an error for now, pending the outcome of https://github.com/numpy/numpy/issues/15959.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36456
Differential Revision: D21159853
Pulled By: mruberry
fbshipit-source-id: fb18fa7048e6104cc24f5ce308fdfb0ba5e4bb30
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34348
We need this function to do swap dequantize for prim::ListConstruct since
the output of prim::ListConstruct is a list of Tensors
Test Plan:
.
Imported from OSS
Differential Revision: D20504454
fbshipit-source-id: e6155e37da98e2219a6f79737cd46fe32a509c9f
Summary:
This PR implements the following linear algebra algorithms for low-rank matrices:
- [x] Approximate `A` as `Q Q^H A` - using Algorithm 4.4 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
+ exposed as `torch.lowrank.get_approximate_basis(A, q, niter=2, M=None) -> Q`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] SVD - using Algorithm 5.1 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
+ uses `torch.lowrank.get_approximate_basis`
+ exposed as `torch.svd_lowrank(A, q=6, niter=2, M=None) -> (U, S, V)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] PCA - using `torch.svd_lowrank`
+ uses `torch.svd_lowrank`
+ exposed as `torch.pca_lowrank(A, center=True, q=None, niter=2) -> (U, S, V)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices, uses non-centered sparse matrix algorithm
+ [x] documentation
- [x] generalized eigenvalue solver using the original LOBPCG algorithm [Knyazev, 2001](https://epubs.siam.org/doi/abs/10.1137/S1064827500366124)
+ exposed as `torch.lobpcg(A, B=None, k=1, method="basic", ...)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] generalized eigenvalue solver using robust LOBPCG with orthogonal basis selection [Stathopoulos, 2002](https://epubs.siam.org/doi/10.1137/S1064827500370883)
+ exposed as `torch.lobpcg(A, B=None, k=1, method="ortho", ...)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] generalized eigenvalue solver using the robust and efficient LOBPCG Algorithm 8 from [Duersch et al, 2018](https://epubs.siam.org/doi/abs/10.1137/17M1129830) that switches to orthogonal basis selection automatically
+ the "ortho" method improves iterations so rapidly that in the current test cases it does not make sense to use the basic iterations at all. If users will have matrices for which basic iterations could improve convergence then the `tracker` argument allows breaking the iteration process at user choice so that the user can switch to the orthogonal basis selection if needed. In conclusion, there is no need to implement Algorithm 8 at this point.
- [x] benchmarks
+ [x] `torch.svd` vs `torch.svd_lowrank`, see notebook [Low-rank SVD](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/Low-rank%20SVD.ipynb). In conclusion, the low-rank SVD is going to be useful only for large sparse matrices where the full-rank SVD will fail due to memory limitations.
+ [x] `torch.lobpcg` vs `scipy.sparse.linalg.lobpcg`, see notebook [LOBPCG - pytorch vs scipy](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/LOBPCG%20-%20pytorch%20vs%20scipy.ipynb). In conculsion, both implementations give the same results (up to numerical errors from different methods), scipy lobpcg implementation is generally faster.
+ [x] On very small tolerance cases, `torch.lobpcg` is more robust than `scipy.sparse.linalg.lobpcg` (see `test_lobpcg_scipy` results)
Resolves https://github.com/pytorch/pytorch/issues/8049.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29488
Differential Revision: D20193196
Pulled By: vincentqb
fbshipit-source-id: 78a4879912424595e6ea95a95e483a37487a907e
Summary:
See NumPy's division documentation here: https://numpy.org/doc/1.18/reference/generated/numpy.divide.html#numpy.divide.
True division is the same as PyTorch's default division except when both inputs are integer or bool tensors. In the latter case the inputs are (conceptually) cast to the default floating type before the division is performed.
The function is implemented for dense and sparse tensors and supports exporting to ONNX from PyTorch's eager mode or JIT traces. The function is inherently incompatible with exporting to ONNX via JIT script, and is another datapoint suggesting we should deprecate exporting scripted graphs to ONNX.
Tests are added for the type promotion, named tensor, and ONNX export behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34236
Reviewed By: houseroad
Differential Revision: D20334087
Pulled By: mruberry
fbshipit-source-id: 83d00d886f46f713215d7d9e02ffd043164c57f1
Summary:
Adds `torch.floor_divide` following the numpy's `floor_divide` api. I only implemented the out-of-place version, I can add the inplace version if requested.
Also fixes https://github.com/pytorch/pytorch/issues/27512
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30493
Differential Revision: D18896211
Pulled By: eellison
fbshipit-source-id: ee401c96ab23a62fc114ed3bb9791b8ec150ecbd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30467
Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.
Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))
The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']
Test Plan: Imported from OSS
Differential Revision: D18801619
Pulled By: iseeyuan
fbshipit-source-id: f9b198d3e82b095daf704ee595d8026ad889bb13
Summary:
With the CI failure caused in 8bbafa0b32 fixed (incorrect return type of the lambdas in CUDA kernels)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30521
Differential Revision: D18770151
Pulled By: ailzhang
fbshipit-source-id: 02f0fe1d5718c34d24da6dbb5884ee8b247ce39a
Summary:
cumsum/cumprod perform their own respective operations over a desired dimension, but there is no reduction in dimensions in the process, i.e. they are not reduction operations and hence just keep the input names of the tensor on which the operation is performed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29453
Differential Revision: D18455683
Pulled By: anjali411
fbshipit-source-id: 9e250d3077ff3d8f3405d20331f4b6ff05151a28
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27782
Warnings show up when running `make html` to build documentation. All of
the warnings are very reasonable and point to bugs in our docs. This PR
attempts to fix most of those warnings.
In the future we will add something to the CI that asserts that there
are no warnings in our docs.
Test Plan: - build and view changes locally
Differential Revision: D17887067
Pulled By: zou3519
fbshipit-source-id: 6bf4d08764759133b20983d6cd7f5d27e5ee3166
Summary:
- Update torch.rst to remove certain autofunction calls
- Add reference to Quantization Functions section in nn.rst
- Update javadocs for v1.3.0
- Update index.rst:
- Update "Package Reference" to "Python API"
- Add in torchaudio and torchtext reference links so they show up across all docs not just the main page
- Add "Other Languages" section, add in C++ docs, add in Javadocs
- Add link to XLA docs under Notes: http://pytorch.org/xla/
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27676
Differential Revision: D17850696
Pulled By: brianjo
fbshipit-source-id: 3de146f065222d1acd9a33aae3b543927a63532a
Summary:
Added Complex support with AVX to unary ops and binary ops.
I need to add nan propagation to minimum() and maximum() in the future.
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: pytorch-cpu-strided-complex extension
Preliminary Benchmarks are here.
I tried rrii and riri and found that riri is better in most situations.
Divide is very slow because you can't reduce 1/(x+y)
Sqrt is also very slow.
Reciprocal could be sped up after I add conj()
Everything else is typically within 20% of the real number performance.
Questions:
Why does macOS not support mil? #if AT_MKL_ENABLED() && !defined(__APPLE__) in vml.h. MKL does support some complex operations like Abs, so I was curious about trying it.
Is MKL just calling AVX?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26500
Differential Revision: D17835431
Pulled By: ezyang
fbshipit-source-id: 6746209168fbeb567af340c22bf34af28286bd54