Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38490
A meta tensor is a tensor that is a lot like a normal tensor,
except it doesn't actually have any data associated with it.
You can use them to carry out shape/dtype computations without
actually having to run the actual code; for example, this could
be used to do shape inference in a JIT analysis pass.
Check out the description in DispatchKey.h for more information.
Meta tensors are part of a larger project to rationalize how we
write kernels so that we don't have to duplicate shape logic
in CPU kernel, CUDA kernel and meta kernel (this PR makes the
duplication problem worse!) However, that infrastructure can
be built on top of this proof of concept, which just shows how
you can start writing meta kernels today even without this
infrastructure.
There are a lot of things that don't work:
- I special cased printing for dense tensors only; if you try to
allocate a meta sparse / quantized tensor things aren't going
to work.
- The printing formula implies that torch.tensor() can take an
ellipsis, but I didn't add this.
- I wrote an example formula for binary operators, but it isn't
even right! (It doesn't do type promotion of memory layout
correctly). The most future proof way to do it right is to
factor out the relevant computation out of TensorIterator,
as it is quite involved.
- Nothing besides torch.add works right now
- Meta functions are ALWAYS included in mobile builds (selective
build doesn't work on them). This isn't a big deal for now
but will become more pressing as more meta functions are added.
One reason I'm putting up this PR now is to check with Yinghai Lu
if we can unblock shape inference for accelerators, while we are
still working on a long term plan for how to unify all shape
computation across our kernels.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21935609
Pulled By: ezyang
fbshipit-source-id: f7d8636eeb8516b6bc296db99a16e56029972eee
Summary:
This PR aims to add `arcosh`, `arcsinh` and `arctanh` support. Please see issue https://github.com/pytorch/pytorch/issues/38349 for more details.
**TODOs:**
* [x] Add test cases for `arcosh`, `arcsinh` and `arctanh`. (need help)
* [x] Overload ops if `std::op` does not work with `thrust::complex` types (like for `sinh`, `cosh`).
Note: `std::acosh, std::asinh, std::atanh` do not support `thrust::complex` types. Added support for complex types for these 3 ops (`arccosh, arcsinh, arctanh`)
cc: mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38388
Differential Revision: D21882055
Pulled By: mruberry
fbshipit-source-id: d334590b47c5a89e491a002c3e41e6ffa89000e3
Summary:
Related to gh-36318
Mention `bfloat16` dtype and `BFloat16Tensor` in documentation. The real fix would be to implement cpu operations on 16-bit float `half`, and I couldn't help but notice that `torch.finfo(torch.bfloat16).xxx` crashes for `xxx in ['max', 'min', 'eps']`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37051
Differential Revision: D21476851
Pulled By: ngimel
fbshipit-source-id: fef601d3116d130d67cd3a5654077f31b699409b
Summary:
Previously torch.isclose would RuntimeError when called on complex tensors. This update updates torch.isclose to run on complex tensors and be consistent with [NumPy](https://numpy.org/doc/1.18/reference/generated/numpy.isclose.html). However, NumPy's handling of NaN, -inf, and inf values is odd, so I adopted Python's [cmath.isclose](https://docs.python.org/3/library/cmath.html) behavior when dealing with them. See https://github.com/numpy/numpy/issues/15959 for more on NumPy's behavior.
While implementing complex isclose I also simplified the isclose algorithm to:
- A is close to B if A and B are equal, if equal_nan is true then NaN is equal to NaN
- If A and B are finite, then A is close to B if `abs(a - b) <= (atol + abs(rtol * b))`
This PR also documents torch.isclose, since it was undocumented, and adds multiple tests for its behavior to test_torch.py since it had no dedicated tests.
The PR leaves equal_nan=True with complex inputs an error for now, pending the outcome of https://github.com/numpy/numpy/issues/15959.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36456
Differential Revision: D21159853
Pulled By: mruberry
fbshipit-source-id: fb18fa7048e6104cc24f5ce308fdfb0ba5e4bb30
Summary:
The current implementations of torch.real and torch.imag are not NumPy compatible. In particular:
- torch.real on a real tensor does not return the real tensor, like contiguous
- torch.real on a complex tensor does not return a real-valued view of the real part
- torch.imag on a complex tensor does not return a real-valued view of the imaginary part
- torch.Tensor.real and torch.Tensor.imag exist as methods, but in NumPy they are writable attributes
This PR makes the functions NumPy compatible by removing the method variants and out kwarg, restricting them to work on only real tensors, and updating the behavior of torch.real to return its input. New tests are added to test_torch.py to verify the behavior, a couple existing complex tests are skipped, and the documentation is updated to reflect the change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35560
Differential Revision: D20714568
Pulled By: mruberry
fbshipit-source-id: 5dd092f45757b620c8426c829dd15ee997246a26
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.
In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.
New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794
Differential Revision: D20545507
Pulled By: mruberry
fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20509850
Pulled By: mruberry
fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20497453
Pulled By: mruberry
fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
Summary:
This PR comes from discussion with albanD in https://fb.quip.com/npBHAXaPfnbu. Main goal is to clarify view ops with general outplace/inplace ops and remind users about the difference.
For reference this information is only available in code which is internal and hard to find. Also changes to this list actually affect users so we think it's better to expose it as public information. It's also helpful for new backend like XLA when implementing PyTorch ops. 19bbb4fccb/tools/autograd/gen_autograd.py (L32-L68)
Please feel free to comment!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32560
Differential Revision: D20161069
Pulled By: ailzhang
fbshipit-source-id: b5f1fd4353fe7594a427784db288aeb5a37dc521
Summary:
With the CI failure caused in 8bbafa0b32 fixed (incorrect return type of the lambdas in CUDA kernels)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30521
Differential Revision: D18770151
Pulled By: ailzhang
fbshipit-source-id: 02f0fe1d5718c34d24da6dbb5884ee8b247ce39a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27850
Many of these are real problems in the documentation (i.e., link or
bullet point doesn't display correctly).
Test Plan: - built and viewed the documentation for each change locally.
Differential Revision: D17908123
Pulled By: zou3519
fbshipit-source-id: 65c92a352c89b90fb6b508c388b0874233a3817a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27782
Warnings show up when running `make html` to build documentation. All of
the warnings are very reasonable and point to bugs in our docs. This PR
attempts to fix most of those warnings.
In the future we will add something to the CI that asserts that there
are no warnings in our docs.
Test Plan: - build and view changes locally
Differential Revision: D17887067
Pulled By: zou3519
fbshipit-source-id: 6bf4d08764759133b20983d6cd7f5d27e5ee3166
Summary:
Added Complex support with AVX to unary ops and binary ops.
I need to add nan propagation to minimum() and maximum() in the future.
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: pytorch-cpu-strided-complex extension
Preliminary Benchmarks are here.
I tried rrii and riri and found that riri is better in most situations.
Divide is very slow because you can't reduce 1/(x+y)
Sqrt is also very slow.
Reciprocal could be sped up after I add conj()
Everything else is typically within 20% of the real number performance.
Questions:
Why does macOS not support mil? #if AT_MKL_ENABLED() && !defined(__APPLE__) in vml.h. MKL does support some complex operations like Abs, so I was curious about trying it.
Is MKL just calling AVX?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26500
Differential Revision: D17835431
Pulled By: ezyang
fbshipit-source-id: 6746209168fbeb567af340c22bf34af28286bd54
Summary:
Changelog:
- Remove `torch.gels` which was deprecated in v1.2.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26480
Test Plan: - No tests were changed and all callsites for `torch.gels` where modified to `torch.lstsq` when `torch.lstsq` was introduced
Differential Revision: D17527207
Pulled By: zou3519
fbshipit-source-id: 28e2fa3a3bf30eb6b9029bb5aab198c4d570a950
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26240
In particular adds support for empty/empty_like which is needed for memory layouts to work.
Test Plan: Imported from OSS
Differential Revision: D17443220
Pulled By: dzhulgakov
fbshipit-source-id: 9c9e25981999c0edaf40be104a5741e9c62a1333
Summary:
This patch writes documentation for `Tensor.record_stream()`, which is not a documented API currently. I've discussed publishing it with colesbury in https://github.com/pytorch/pytorch/issues/23729.
The documentation is based on [the introduction at `CUDACachingAllocator.cpp`](25d1496d58/c10/cuda/CUDACachingAllocator.cpp (L47-L50)). ~~I didn't explain full details of the life cycle of memory blocks or stream awareness of the allocator for the consistent level of details with other documentations.~~ I explained about the stream awareness in a note block.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24078
Differential Revision: D16743526
Pulled By: zou3519
fbshipit-source-id: 05819c3cc96733e2ba93c0a7c0ca06933acb22f3
Summary:
Changelog:
- Rename `gels` to `lstsq`
- Fix all callsites
- Rename all tests
- Create a tentative alias for `lstsq` under the name `gels` and add a deprecation warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23460
Test Plan: - All tests should pass to confirm that the patch is correct
Differential Revision: D16547834
Pulled By: colesbury
fbshipit-source-id: b3bdb8f4c5d14c7716c3d9528e40324cc544e496