Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31334
The wipe cache logic was introduced hoping to reduce the variations in the benchmark results. Based on our experiments result, it didn't actually help with that. In addition, several engineers had encountered the issue of missing cpuinfo.h which was used in the wipe cache logic. So this diff removes that feature to ensure smooth installation and running of the op bench.
Test Plan:
```
buck run caffe2/benchmarks/operator_benchmark/pt:add_test -- --iterations 1
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short
# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M1_N1_K1_cpu
# Input: M: 1, N: 1, K: 1, device: cpu
Forward Execution Time (us) : 111.192
A/B test also pass Benchmark Run #2476535015
Reviewed By: hl475
Differential Revision: D19126970
fbshipit-source-id: 9b1ab48c121838836ba6e0ae664a48fe2d18efdd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29864
This diff make `all` as a reserved keyword for tag_filter. When `all` is passed from user, it will run all the supported shapes.
Test Plan:
```
buck run //caffe2/benchmarks/operator_benchmark/pt:add_test -- --iterations 1 --tag_filter all
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : all
# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N32_K256_cpu
# Input: M: 8, N: 32, K: 256, device: cpu
Forward Execution Time (us) : 6798.688
...
Reviewed By: hl475
Differential Revision: D18520249
fbshipit-source-id: 4d55af9f46f89b2fe8842e1a00dfa8e5acaf4fa2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28731
as title
Test Plan:
```
Before:
buck run mode/opt caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --operator sigmoid
Invalidating internal cached state: Buck configuration options changed between invocations. This may cause slower builds.
Changed value project.buck_out='buck-out/opt' (was 'buck-out/dev')
... and 69 more. See logs for all changes
Parsing buck files: finished in 7.2 sec
Creating action graph: finished in 10.0 sec
Building: finished in 06:38.4 min (100%) 29890/29890 jobs, 29890 updated
Total time: 06:55.7 min
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short
# Benchmarking PyTorch: sigmoid
With this diff
buck run mode/opt caffe2/benchmarks/operator_benchmark:benchmark_all_test -- --operator sigmoid
Parsing buck files: finished in 6.4 sec
Creating action graph: finished in 9.8 sec
Building: finished in 06:35.9 min (100%) 29892/29892 jobs, 29892 updated
Total time: 06:52.1 min
Reviewed By: hl475
Differential Revision: D18152071
fbshipit-source-id: 80c29570581bbd2f0e78e2df32734c17a2b036ee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23442
Replace the argument name from `operator` to `operators` which can take a list of operators to test.
Reviewed By: hl475
Differential Revision: D16520779
fbshipit-source-id: 94284a87c64471793e319f5bd3143f89b9a192bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22892
Think of num_runs as manually run the binary <num_runs> times. Each run runs the operator for many iterations.
Reviewed By: hl475
Differential Revision: D16271597
fbshipit-source-id: b6f509ee0332c70f85bec0d447b84940c5c0cecd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22309
This diff enables PT operators to run with JIT mode. Users can control eager and JIT mode using the `use_jit` flag.
In this diff, we are putting operators in a loop and passed it to JIT. One extra step which wraps the operator with the `_consume` op is introduced to avoid dead code elimination optimization in JIT. With that, the reported time includes the real operator execution time plus the `_consume` (directly return input, nothing else if happening inside) op.
Reviewed By: zheng-xq
Differential Revision: D16033082
fbshipit-source-id: e03be89fd5a505e44e81015dfc63db9cd76fb8a1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21440
This diff modifies the output format when ai_pep_format is enabled.
Reviewed By: hl475
Differential Revision: D15681042
fbshipit-source-id: df5f2dbb38d1bd866ca7f74ef4e63459d480be6e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21206
This diff change the default test_name to be a globally unique value across tests. With that, users can list all the tests and choose to run a specific test.
Reviewed By: zheng-xq
Differential Revision: D15543508
fbshipit-source-id: 0814ef6a60d41637fed5245e30c282497cf21bb8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21147
This diff introduces a new interface to add PT/C2 operators to the benchmark suite.
The following steps are needed to add a new operator:
1. Specify the input shapes, args to an operator in configs
2. Create a PT/C2 benchmark class which includes ```init``` (create tensors), ```forward``` (specify the operator to be tested.), and ```backward```(gradient of an op.) methods
3. call generate_pt_test/generate_c2_test to create test cases based on configs
Reviewed By: zheng-xq
Differential Revision: D15250380
fbshipit-source-id: 1025a7cf60d2427baa0f3f716455946d3d3e6a27
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19518
Previous design needs to run the op benchmarks from PyTorch root directory which could lead to `module not found` error in OSS environment. This diff fixes that issue by making the benchmark to be launched in the `benchmarks` folder.
Reviewed By: ilia-cher
Differential Revision: D15020787
fbshipit-source-id: eb09814a33432a66cc857702bc86538cd17bea3b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19450
We want to make each operator benchmark as a separate binary. The previous way to run the benchmark is by collecting all operators into a single binary, it is unnecessary when we want to filter a specific operator. This diff aims to resolve that issue.
Reviewed By: ilia-cher
Differential Revision: D14808159
fbshipit-source-id: 43cd25b219c6e358d0cd2a61463b34596bf3bfac
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19433
For operator benchmark project, we need to cover a lot of operators, so the interface for adding operators needs to be very clean and simple. This diff is implementing a new interface to add op.
Here is the logic to add new operator to the benchmark:
```
long_config = {}
short_config = {}
map_func
add_test(
[long_config, short_config],
map_func,
[caffe2 op]
[pt op]
)
```
Reviewed By: zheng-xq
Differential Revision: D14791191
fbshipit-source-id: ac6738507cf1b9d6013dc8e546a2022a9b177f05
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18740
Test utilities for writing Caffe2/PyTorch performance microbenchmarks. Brief description of the file structure
* benchmark_core.py : core utiltiites for running microbenchmark tests
* benchmark_caffe2.py : Caffe2 specific benchmark utilitites
* benchmark_pytorch.py: PyTorch specific benchmark utilities
* benchmark_runner.py : Main function. Currently it can run the microbenchmark tests in a stand-alone mode. The next step is to have this integrate with AI-PEP.
The utilities are located at https://github.com/pytorch/pytorch/tree/master/test to have access to both Caffe2/PyTorch Python's frontend.
Include two operator microbenchmarks; support both Caffe2/PyTorch:
* MatMul
* Add
Reference: PyTorch benchmarks : https://github.com/pytorch/benchmark/tree/master/timing/python. In this work, we start with two example binary operators MatMul and Add, but eventually we should to cover unary operators like in the PyTorch benchmark repo.
Reviewed By: zheng-xq
Differential Revision: D13887111
fbshipit-source-id: b7a56b95448c9ec3e674b0de0ffb96af4439bfce