Commit Graph

1710 Commits

Author SHA1 Message Date
Aaron Gokaslan
bbda22e648 [BE][Ez]: Optimize unnecessary lambda with operator (#154722)
Automated edits performed by FURB118. Operator is implemented in C and way faster when passed to another C method like sorted, max etc as a `key=`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154722
Approved by: https://github.com/jansel
2025-05-30 23:47:10 +00:00
Justin Chu
c3100067ae [ONNX] Update onnx to 1.18 (#153746)
Update onnx python package to 1.18.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153746
Approved by: https://github.com/titaiwangms, https://github.com/cyyever, https://github.com/malfet
2025-05-25 20:58:47 +00:00
Justin Chu
0e805aad7f [ONNX] Support float4 (#151069)
- Support exporting float4 models (note: currently we use IR version 10 universally in the exporter, which does not include float 4 support. Eventually when onnx runtime and the ecosystem moves to support the new IR version 11 we should bump our version to 11 in the exporter as well)
- The shape of the type is set according to https://github.com/pytorch/pytorch/pull/148791#discussion_r2038704986 (added last dim with size 2)
- Use ml_dtypes types when converting to numpy for consistency with ONNX IR

Fix https://github.com/pytorch/pytorch/issues/150202

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151069
Approved by: https://github.com/titaiwangms
2025-05-18 03:19:35 +00:00
Aaron Gokaslan
3555ebb63d [BE]: Update ruff to 0.11.8 (#153249)
Fixes a ton of false negatives throughout the codebase. RUFF also properly validates NOQA comments now and most of the changes are fixing typos there or removing filewide flake8 suppressions that were also silencing ruff issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153249
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/seemethere
2025-05-12 18:30:52 +00:00
Ti-Tai Wang
90fde0dc09 [ONNX] Support sym_float (#153200)
Fixes #153115

Note: torch.sym_int is not supported in this PR because it's not appeared in exported program, instead, it's `torch.ops.aten.sym_size.int()`.

```
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, x: "f32[s35, s16]"):
             #
            sym_size_int_1: "Sym(s35)" = torch.ops.aten.sym_size.int(x, 0);  x = None
            return (sym_size_int_1,)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153200
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2025-05-09 19:10:17 +00:00
Ti-Tai Wang
773a91c775 [ONNX] dynamic_shapes uses DYNAMIC (#153065)
Although Dim.AUTO covers the cases that a user sets more axes to be dynamic than the model actually needs, it silently falls back to STATIC when DYNAMIC fails. This increases the difficulty of debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153065
Approved by: https://github.com/justinchuby
2025-05-07 21:48:41 +00:00
Ti-Tai Wang
5fa5017479 [ONNX] Suggest users setting dynamo=True when exporting (#152478)
Fixes #152025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152478
Approved by: https://github.com/justinchuby
2025-05-06 23:18:11 +00:00
Ti-Tai Wang
a5dd7011a0 [ONNX] Delete JitTraceConvertStrategy (#152556)
Fixes #151703

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152556
Approved by: https://github.com/justinchuby
2025-05-02 00:26:43 +00:00
Anthony Shoumikhin
e2f9759bd0 Fix broken URLs (#152237)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152237
Approved by: https://github.com/huydhn, https://github.com/malfet
2025-04-27 09:56:42 +00:00
xadupre
91c590f048 [ONNX] add converters for sym_min, sym_max (#152196)
Conversion of Phi4-multimodel-instruct fails because of missing converters for torch.sym_max, and torch.sym_min.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152196
Approved by: https://github.com/justinchuby
2025-04-25 20:01:05 +00:00
Justin Chu
a811d3351b [ONNX] Implement sym_not (#152111)
Implement onnx support for sym_not. Replaces https://github.com/pytorch/pytorch/pull/147472

Fix https://github.com/pytorch/pytorch/issues/136572
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152111
Approved by: https://github.com/titaiwangms
2025-04-25 07:50:37 +00:00
Justin Chu
e2c7ae52d5 [ONNX] Add group_norm support from opset 21 (#152138)
I didn't run the model in test because ORT doesn't have the op yet. Nevertheless it should be leveraged for newer opset versions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152138
Approved by: https://github.com/titaiwangms, https://github.com/shubhambhokare1, https://github.com/cyyever
2025-04-25 03:30:07 +00:00
titaiwangms
6cd1741985 [ONNX] Update decomposition logic to loop over onnx registry (#151826)
Fixes #150367

This PR makes decomposition table from onnx registry, which includes registered ops not only ATen and prim. This will help to keep the custom ops that are specified in the custom_translation table from decomposition during ONNX export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151826
Approved by: https://github.com/justinchuby
2025-04-22 19:40:52 +00:00
Justin Chu
56d318bfac [ONNX][Eazy] Update onnx program doc formatting and improve robustness (#151623)
- Update docstring list formatting
- Use a try finally block to keep the model unmodified if save() fails.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151623
Approved by: https://github.com/titaiwangms
2025-04-18 21:31:31 +00:00
Justin Chu
8780d18f64 [ONNX] Add a comment for handling bf16/fp8 tensor to numpy conversion (#151371)
Follow up of https://github.com/pytorch/pytorch/pull/151259
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151371
Approved by: https://github.com/titaiwangms
2025-04-16 00:49:38 +00:00
Justin Chu
9917feff50 [ONNX] Produce correct dtypes for bf16/f8 in IR TorchTensor (#151259)
Split the changes from https://github.com/pytorch/pytorch/pull/151069 to address https://github.com/microsoft/onnxscript/issues/2187, where the output np arrays do not have the correct ml_dtypes types as expected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151259
Approved by: https://github.com/titaiwangms
2025-04-15 23:21:04 +00:00
Justin Chu
901e37515f [ONNX] Fix bfloat16 support in onnx_program callable (#151121)
- Added a test to guard bfloat16. The optimizer incorrectly turns bfloat16 initializers into uint16, but this is not relevant to export logic.
- Fix bfloat16 support in onnx_program callable

Tested with the following with cuda

```py
import torch

class BfloatModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.param = torch.nn.Parameter(torch.tensor(2.0, dtype=torch.bfloat16))

    def forward(self, x):
        return x * torch.tensor(1.0, dtype=torch.bfloat16) * self.param

input = torch.randn(1, 10, dtype=torch.bfloat16)
model = BfloatModel()
onnx_program = torch.onnx.export(model, (input,), dynamo=True, optimize=False, verify=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151121
Approved by: https://github.com/titaiwangms

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-04-14 19:27:29 +00:00
Thomas Adams
8494d5582a Propagate callable parameter types using ParamSpec (#142306) (#151014)
Partially addresses #142306

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151014
Approved by: https://github.com/Skylion007
2025-04-13 20:38:11 +00:00
Justin Chu
75162aa7de [ONNX] Support running bfloat16 models with ONNX Runtime (#149646)
Use ORTValue objects to support bfloat16 and other dtypes as inputs. This only supports cuda as ort only implements bfloat16 on cuda.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149646
Approved by: https://github.com/titaiwangms
2025-04-11 03:38:26 +00:00
Justin Chu
f304483e95 [ONNX] Add asdict method to VerificationInfo class (#151024)
This pull request introduces a new method to convert `VerificationInfo` objects to dictionaries and includes a corresponding test to ensure the method works correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151024
Approved by: https://github.com/titaiwangms
2025-04-10 22:23:33 +00:00
shubhambhokare1
1a56609e75 [ONNX] Supporting different opset versions for torchlib registry (#149901)
- Allows opset_version to determine which onnx decomposition to choose
- Adds a cleanup function to modify the registry after it is built

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149901
Approved by: https://github.com/justinchuby, https://github.com/titaiwangms
2025-04-09 16:03:46 +00:00
Pian Pawakapan
103bf64a3c [export] refactor _Dim into Dim (#149891)
Summary: forward fix T218515233

Test Plan: test_export

Differential Revision: D71769231

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149891
Approved by: https://github.com/jingsh, https://github.com/angelayi
2025-03-28 06:19:03 +00:00
Justin Chu
3efa211e48 [ONNX] Annotate None inputs in symbolic ops (#150038)
Add `None` to type annotations of `torch.onnx.ops.symbolic*` ops and improve tests to test support for optional inputs. Previously it was omitted mistakenly even though the implementation supports it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150038
Approved by: https://github.com/titaiwangms
2025-03-27 00:01:09 +00:00
Justin Chu
6ae8eb881c [ONNX] Clean up the diagnostics module (#149864)
Remove the diagnostics/SARIF module from ONNX exporter because it is obsolete unused.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149864
Approved by: https://github.com/titaiwangms
2025-03-26 05:58:32 +00:00
PyTorch MergeBot
30e8be599f Revert "[ONNX] Clean up the diagnostics module (#149864)"
This reverts commit cc6e300fe2.

Reverted https://github.com/pytorch/pytorch/pull/149864 on behalf of https://github.com/malfet due to This indeed broke Mac testing see 1c98dc3664/1 ([comment](https://github.com/pytorch/pytorch/pull/149864#issuecomment-2752317873))
2025-03-25 19:31:50 +00:00
Justin Chu
cc6e300fe2 [ONNX] Clean up the diagnostics module (#149864)
Remove the diagnostics/SARIF module from ONNX exporter because it is obsolete unused.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149864
Approved by: https://github.com/titaiwangms
2025-03-25 16:58:46 +00:00
titaiwangms
280e48739a [ONNX] Set is_in_onnx_export for dynamo=True (#149678)
Fixes #149141

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149678
Approved by: https://github.com/justinchuby
2025-03-25 03:16:23 +00:00
Justin Chu
2dccd70ef0 [ONNX] Clean up legacy dynamo export code (#149745)
Clean up code that is unused and obsolete. The public `torch.onnx.dynamo_export` is kept for now but the legacy implementation is removed.

Remove public option classes and OnnxRegistry that have been deprecated.

Users: use torch.onnx.export(…, dynamo=True).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149745
Approved by: https://github.com/titaiwangms, https://github.com/cyyever
2025-03-23 19:35:16 +00:00
Justin Chu
a39bf846f5 [ONNX] Add draft_export as a strategy (#147529)
Create draft_export strategy.

The strategy is added before jit and after strict=True, as the third fallback. Since it is specializing tensors it should not be less robust than the jit trace strategy.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147529
Approved by: https://github.com/titaiwangms
2025-03-21 03:05:17 +00:00
Justin Chu
362b40939d [ONNX] Improve docstring of onnx symbolic ops (#149668)
Better examples
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149668
Approved by: https://github.com/titaiwangms
2025-03-21 01:57:39 +00:00
Pian Pawakapan
96828a2155 [export] refactor DimHints for type errors (#149424)
Differential Revision: D71414367

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149424
Approved by: https://github.com/justinchuby, https://github.com/avikchaudhuri
2025-03-19 18:51:07 +00:00
Justin Chu
010963032c [ONNX] Create onnx_symbolic (#148905)
In the old exporter we allow users to define a symbolic() method to bypass JIT tracing for a block of logic. We can allow users to do similar things by creating symbolic ops at export.

This PR implements `torch.onnx.ops.symbolic` and `torch.onnx.ops.symbolic_multi_out` to allow users to create onnx nodes symbolically with pt2 & fx. The custom pytorch ops were designed such that the attributes are encoded to be part of a valid fx op. Users provide shape and dtype for the meta function to produce the currect fake tensor during export.

An example is

![image](https://github.com/user-attachments/assets/c62f5f21-e038-456e-a71d-b9a5d0a7cd9d)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148905
Approved by: https://github.com/titaiwangms
2025-03-18 21:32:06 +00:00
Aleksei Nikiforov
d5b1d99f78 Enable more nightly tests on s390x (#148452)
Also enable some tests which probably were accidentally disabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148452
Approved by: https://github.com/seemethere, https://github.com/malfet
2025-03-18 16:09:39 +00:00
Justin Chu
fdacf3c920 [ONNX] Update types in VerificationInfo (#149377)
torch.types.Number was rendered as is in the documentation and can be confusing. We write the original types instead to reduce confusion for users.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149377
Approved by: https://github.com/titaiwangms
2025-03-18 15:37:39 +00:00
Justin Chu
ebabd0efdd [ONNX] Expose verification utilities (#148603)
Expose verification utilities to public documentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148603
Approved by: https://github.com/titaiwangms
2025-03-18 02:10:34 +00:00
Aaron Gokaslan
a0ac63cbd9 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-18 00:46:07 +00:00
PyTorch MergeBot
24cfeec2c7 Revert "[BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)"
This reverts commit bfee141666.

Reverted https://github.com/pytorch/pytorch/pull/149257 on behalf of https://github.com/malfet due to Let's see if it helps restore compiler benchmark sanity, see 8bc7bd94a5/1 ([comment](https://github.com/pytorch/pytorch/pull/149257#issuecomment-2731133812))
2025-03-17 22:57:00 +00:00
Aaron Gokaslan
bfee141666 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-16 23:52:58 +00:00
Justin Chu
d96c85558a [ONNX] Use torch export to get dynamic shapes for JIT convert strategy (#148627)
Use torch export to get dynamic shapes for JIT converted graph. I just realized we can retrace a converted jit graph with `torch.export` and produce dynamic shapes using `torch.export`.

-	**Prior:** The exporter will produce a **static graph silently** even when dynamic_shapes are provided.
-	**Proposed:** When `dynamic_shapes` is provided and when the strategy is able to handle it, it will succeed

## Why are we still keeping the JIT strategy?

It is useful when users want to convert JIT modules or `.pt` files into ONNX via the new path. Sometimes also useful when there are JIT scripted modules in the nn module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148627
Approved by: https://github.com/titaiwangms
2025-03-07 23:41:50 +00:00
Justin Chu
d36391307f [ONNX] Handle error in verification interpreter (#148730)
Use a simple try catch to handle onnx runtime errors in the verification interpreter when that happens. One example is ort will sometimes produce a list of None for some nodes. I am not sure how that happens yet.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148730
Approved by: https://github.com/titaiwangms
ghstack dependencies: #148706
2025-03-07 20:24:49 +00:00
Justin Chu
e3087f6d76 [ONNX] Improve verify_onnx_program to use VerificationInterpreter (#148706)
I realized we can just extend `verify_onnx_program` to return intermediate values. There is no need for us to expose the VerificationInterpreter to users.

I added a `compare_intermediates` option to `verify_onnx_program`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148706
Approved by: https://github.com/titaiwangms
2025-03-07 00:40:54 +00:00
titaiwangms
e7bc1d1791 [ONNX] Update saved exported program in debugging report if the exporting passes run_decomposition() (#148617)
Previous to this PR, if the exporting passes run_decomposition(), the report still shows the exported_program before decomposition, which adds the difficulties to our users when they want to check the exported program that are used to translate to ONNX graph.

The following example is what we see before this PR:

```
# PyTorch ONNX Conversion Report

```
 Obtain model graph with `torch.export.export(..., strict=False)`
 Obtain model graph with `torch.export.export(..., strict=True)`
 Obtain model graph with `torch.jit.trace`
 Decompose operators for ONNX compatibility
 Translate the graph into ONNX
 Run `onnx.checker` on the ONNX model
 Execute the model with ONNX Runtime
 Validate model output accuracy
```

## Error messages

```pytb

Traceback (most recent call last):

  File "/home/titaiwang/pytorch/torch/onnx/_internal/exporter/_core.py", line 707, in _translate_fx_graph
    _handle_call_function_node_with_lowering(

  File "/home/titaiwang/pytorch/torch/onnx/_internal/exporter/_core.py", line 486, in _handle_call_function_node_with_lowering
    raise _errors.DispatchError(

torch.onnx._internal.exporter._errors.DispatchError: No ONNX function found for <OpOverload(op='aten.slice', overload='Tensor')>. Failure message: No decompositions registered for the complex-valued input

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

  File "/home/titaiwang/pytorch/torch/onnx/_internal/exporter/_core.py", line 1371, in export
    onnx_program = _exported_program_to_onnx_program(
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

  File "/home/titaiwang/pytorch/torch/onnx/_internal/exporter/_core.py", line 1007, in _exported_program_to_onnx_program
    values = _translate_fx_graph(
             ^^^^^^^^^^^^^^^^^^^^

  File "/home/titaiwang/pytorch/torch/onnx/_internal/exporter/_core.py", line 733, in _translate_fx_graph
    raise _errors.ConversionError(

torch.onnx._internal.exporter._errors.ConversionError: Error when translating node %slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%_to_copy, 0, 0, 9223372036854775807), kwargs = {}). See the stack trace for more information.

```

## Exported program

```python
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, x: "f32[3, 4]"):
             # File: /home/titaiwang/pytorch/test_slice_complex.py:6 in forward, code: x_complex = x.to(torch.complex64)
            to: "c64[3, 4]" = torch.ops.aten.to.dtype(x, torch.complex64);  x = None

             # File: /home/titaiwang/pytorch/test_slice_complex.py:8 in forward, code: return x_complex[:, :2]
            slice_1: "c64[3, 4]" = torch.ops.aten.slice.Tensor(to, 0, 0, 9223372036854775807);  to = None
            slice_2: "c64[3, 2]" = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 2);  slice_1 = None
            return (slice_2,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='slice_2'), target=None)])
Range constraints: {}

```

## Analysis

PyTorch ONNX Conversion Analysis

## Model Information

The model has 0 parameters and 0 buffers (non-trainable parameters).
Number of parameters per dtype:
```python
defaultdict(<class 'int'>, {})
```
Number of buffers per dtype:
```python
defaultdict(<class 'int'>, {})
```

Inputs:
- `x`: `TensorMetadata(shape=torch.Size([3, 4]), dtype=torch.float32, requires_grad=False, stride=(4, 1), memory_format=torch.contiguous_format, is_quantized=False, qparams={})`

Outputs:
- `slice_2`: `TensorMetadata(shape=torch.Size([3, 2]), dtype=torch.complex64, requires_grad=False, stride=(4, 1), memory_format=None, is_quantized=False, qparams={})`

The FX graph has 5 nodes in total. Number of FX nodes per op:
- `placeholder`: 1
- `call_function`: 3
- `output`: 1

Of the call_function nodes, the counts of operators used are:

- `aten.slice.Tensor`: 2
- `aten.to.dtype`: 1

## ONNX Conversion Information

The model contains operators the dispatcher could not find registered ONNX decompositions for. This may be due to missing implementations, decompositions not registered correctly, or a bug in the dispatcher.

Errors grouped by operator:

- `aten.to.dtype`:     No decompositions registered for the real-valued input. Example node: `%to : [num_users=1] = call_function[target=torch.ops.aten.to.dtype](args = (%x, torch.complex64), kwargs = {})`. All nodes: `[to]`
- `aten.slice.Tensor`:     No decompositions registered for the complex-valued input. Example node: `%slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%to, 0, 0, 9223372036854775807), kwargs = {})`. All nodes: `[slice_1, slice_2]`

## Decomposition comparison

Ops exist only in the ExportedProgram before decomposition: `['aten.to.dtype']`

Ops exist only in the ExportedProgram after decomposition: `['aten._to_copy.default']`

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148617
Approved by: https://github.com/justinchuby
2025-03-06 07:03:45 +00:00
titaiwangms
f057206fca [ONNX] Support complex comparison when verify=True (#148619)
Previously, the comparison of complex numbers was not supported when `verify=True`.

NOTE: This PR can be extended to support more complex comparison cases if there are other places in onnx codebase needed to be changed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148619
Approved by: https://github.com/justinchuby
2025-03-06 04:38:43 +00:00
Justin Chu
e1dee4ccb3 [ONNX] Assert capture strategy in tests (#148348)
Previously the strategy used for obtaining the exported program is not asserted. This leads to silent errors if torch.export breaks something and a fallback strategy is used. This change adds a _capture_strategy field to ONNXProgram and enables unit tests to assert the strategy used to prevent fallbacks from happening.

Fixes #147674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148348
Approved by: https://github.com/titaiwangms, https://github.com/shubhambhokare1
2025-03-05 22:31:54 +00:00
Justin Chu
c6a05df174 [ONNX] Use onnxscript apis for 2.7 (#148453)
Use onnxscript apis for 2.7.

Remove reference to `torchlib_opset()` and `torchlib_opset_version()` which were removed in the onnxscript 2.7 apis. These apis were removed because torchlib in onnxscript will always stay on opset 18. Future opset version bumps will happen in pytorch core after the migration of torchlib.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148453
Approved by: https://github.com/titaiwangms, https://github.com/shubhambhokare1
2025-03-05 20:10:00 +00:00
Justin Chu
50e827b3df [ONNX] Create VerificationInterpreter (#148396)
An fx interpreter for comparing ONNX values with pytorch ones.

```py
import torch
from torch.onnx._internal.exporter._verification import VerificationInterpreter

class Model(torch.nn.Module):
    def forward(self, query, key, value):
        res = torch.nn.functional.scaled_dot_product_attention(
            query, key, value
        )
        rest = res.transpose(0, 1)
        return rest.view(8, 32, 128 * 64)

model = Model()

query = torch.rand(32, 8, 128, 64, dtype=torch.float16)
key = torch.rand(32, 8, 128, 64, dtype=torch.float16)
value = torch.rand(32, 8, 128, 64, dtype=torch.float16)

onnx_program = torch.onnx.export(model, (query, key, value), dynamo=True)
interpreter = VerificationInterpreter(onnx_program)
interpreter.run(query, key, value)
for info in interpreter.verification_infos:
    print(info)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148396
Approved by: https://github.com/titaiwangms
2025-03-05 19:18:52 +00:00
Xuehai Pan
c73a92fbf5 [BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546)
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements

> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
>     f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
2025-02-27 20:46:16 +00:00
Ti-Tai Wang
8ee84aa703 [ONNX] Fix missed None type support in dyamic shapes string cases (#148025)
In `_any_str_or_dim_in_dynamic_shapes`, we strictly guard the `dynamic_shapes` to make sure the flattened shapes are valid. But the code missed to consider None could be in the shapes.

NOTE: Found in benchmarking with Olive.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148025
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2025-02-27 07:57:47 +00:00
Xuehai Pan
754fb834db [BE][CI] bump ruff to 0.9.0: string quote styles (#144569)
Reference: https://docs.astral.sh/ruff/formatter/#f-string-formatting

- Change the outer quotes to double quotes for nested f-strings

```diff
- f'{", ".join(args)}'
+ f"{', '.join(args)}"
```

- Change the inner quotes to double quotes for triple f-strings

```diff
  string = """
-     {', '.join(args)}
+     {", ".join(args)}
  """
```

- Join implicitly concatenated strings

```diff
- string = "short string " "short string " f"{var}"
+ string = f"short string short string {var}"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144569
Approved by: https://github.com/Skylion007
ghstack dependencies: #146509
2025-02-24 19:56:09 +00:00
Xuehai Pan
52f6d4aa30 [BE][CI][Easy] bump ruff to 0.9.0: long statements in docstrings (#146509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146509
Approved by: https://github.com/justinchuby, https://github.com/Skylion007
2025-02-24 19:56:08 +00:00
Aaron Orenstein
086d146f6f Update ruff linter for PEP585 (#147540)
This turns on PEP585 enforcement in RUFF.

- Updates the target python version
- Stops ignoring UP006 warnings (PEP585)
- Fixes a few issues which crept into the tree in the last day

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147540
Approved by: https://github.com/justinchuby, https://github.com/Skylion007
2025-02-22 04:45:17 +00:00
Aaron Orenstein
db4ce78d46 PEP585: More UP006 fixes (#146392)
This should be the final PR before we can enable RUFF UP006.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146392
Approved by: https://github.com/justinchuby, https://github.com/albanD, https://github.com/Skylion007
2025-02-20 06:18:13 +00:00
Justin Chu
41ae15faa3 [ONNX] Add scaffolding for onnx decomp and logic for op tests (#147392)
Create scaffold for onnx op test data and common logic. This PR creates the scaffolding for new onnx decomp functions described in https://github.com/pytorch/pytorch/issues/139301. It adds two ops: abs and add, and enables the related tests.

https://github.com/pytorch/pytorch/issues/139301
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147392
Approved by: https://github.com/titaiwangms
ghstack dependencies: #147396
2025-02-19 21:55:12 +00:00
Justin Chu
279c7f262e [ONNX] Refactor dispatcher and registry (#147396)
This PR sets up the registry to accept onnx decomp functions to be moved into PyTorch (https://github.com/pytorch/pytorch/issues/139301).

The ops from onnx script are currently appended to the registry. When the ops are moved into PyTorch, the moved ops takes precedence because they appear first in the registry list.

After the migration hooks for loading ops from onnx script will be removed.

1. Use a private field `_pt_onnx_signature` to store function signatures to avoid conflicts
2. Update the registry to record the signature in OnnxDecompMeta and update the dispatcher to leverage the data structure
3. Update registry to prepare for onnx op registration, and update the the onnx_impl decorator to support a no_compile option

Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147396
Approved by: https://github.com/titaiwangms
2025-02-19 19:38:28 +00:00
titaiwangms
953f7834cc [ONNX] Pick up missing types in dynamic shapes renaming (#147407)
Found in `_check_dynamic_shapes` that int and None type are valid inputs of dynamic_shapes.
This PR adds the support on these two types and add the tests to guard the sync of ONNX flatten logic and the one in expor.t
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147407
Approved by: https://github.com/justinchuby
2025-02-19 01:49:53 +00:00
Justin Chu
58f654b5ad [ONNX] Consolidate constants to a single location (#147166)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147166
Approved by: https://github.com/titaiwangms
ghstack dependencies: #147164, #147165
2025-02-14 19:08:19 +00:00
Justin Chu
765bc30ab9 [ONNX] Set warning stacklevel so it appears at the torch.onnx call site (#147165)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147165
Approved by: https://github.com/Skylion007
ghstack dependencies: #147164
2025-02-14 19:04:43 +00:00
Justin Chu
9a1eac6704 [ONNX] Handle number of outputs in builder (#147164)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147164
Approved by: https://github.com/titaiwangms
2025-02-14 19:03:51 +00:00
Aaron Gokaslan
6344ca1dd4 [BE][Ez]: Apply FURB188: use str remove(pre|suf)fix (#146997)
Since we are on 3.9, we can use this nice str builtin which is more readable and more efficient.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146997
Approved by: https://github.com/XuehaiPan, https://github.com/cyyever, https://github.com/jansel
2025-02-14 03:38:07 +00:00
Justin Chu
fd21126007 [ONNX] Deprecation message follow up (#147005)
Follow up on https://github.com/pytorch/pytorch/pull/146923 to address comments.

This pull request includes updates to the `torch/onnx` module, focusing on deprecations and documentation improvements. The most important changes involve moving version change notes within the `export` function, updating deprecation messages, and removing example code in the `dynamo_export` function.

Documentation and Deprecation Updates:

* [`torch/onnx/__init__.py`](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L172-L184): Moved version change notes to the correct location within the `export` function's docstring. Updated the deprecation note for the `dynamo_export` function to version 2.7 and removed example code from its docstring. [[1]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L172-L184) [[2]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553R349-R357) [[3]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L434-R430) [[4]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L445-L475)

* [`torch/onnx/utils.py`](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL111-R114): Enhanced deprecation messages for several functions (`select_model_mode_for_export`, `disable_apex_o2_state_dict_hook`, `setup_onnx_logging`, `unconvertible_ops`) to provide clearer guidance on their removal and suggest copying logic if needed. [[1]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL111-R114) [[2]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL148-R151) [[3]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL166-R173) [[4]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL1180-R1189) [[5]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL1190-R1199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147005
Approved by: https://github.com/titaiwangms
2025-02-12 22:48:56 +00:00
Justin Chu
f655f840b8 [ONNX][dort] Remove reference to onnxscript rewriter (#147003)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147003
Approved by: https://github.com/titaiwangms, https://github.com/gramalingam, https://github.com/shubhambhokare1
2025-02-12 22:02:07 +00:00
Justin Chu
7f62616a58 [ONNX][reland2] Create deprecation warning on dynamo_export (#146923)
Reland two PRs
- https://github.com/pytorch/pytorch/pull/146425
- https://github.com/pytorch/pytorch/pull/146639

Fixed by removing the deprecation warning on a base class `ExportOptions`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146923
Approved by: https://github.com/titaiwangms
2025-02-12 18:28:37 +00:00
titaiwangms
b894c2824b [ONNX] Support custom axis name through dynamic_shapes (#146321)
Fixes #143443

This PR aims to support custom dynamic axis naming through dynamic_shapes. Currently, _Dim and _DimHint do not support dynamic axis naming (#144273).

1. **the original dynamic shapes guarantee**
The axis renaming is only applied when dynamic shapes include string instead of all _Dim and _DimHint. Thus, there will not be any inconsistent behavior to dynamic_shapes with torch.export.export if the given dynamic shapes follow torch.export.export format.
2. _DimHint.AUTO is applied to the axes that are specified with custom names to avoid exporter crash. (_DimHint.DYNAMIC crashes when the export fails.)
3.  There's no need to handle cases where kwargs are out of order with the model signature,
    as torch.export.export supports dynamism only when kwargs and dynamic_shapes are provided in order.
    49082f9dba/torch/export/_trace.py (L2034)
4. If `torch.onnx.ExportedProgram` finds the axes share the same constraints, they will have the same name (e.g. s0, s1, ...). Therefore, even if the ONNX users specify them with different custom names, they won't be respected.

Example model:
```python
        class NestedModel(torch.nn.Module):
            def forward(
                self,
                x: torch.Tensor,
                ys: list[torch.Tensor],
                zs: dict[str, torch.Tensor],
                c: torch.Tensor,
            ):
                y = ys[0] + ys[1] + zs["a"] + zs["b"]
                w = 5
                if x.shape[0] < 3 and c.shape[0] != 4:
                    return x + w, x + y, c
                else:
                    return x - w, x - y, c

        input = (
            torch.ones(5),
            [torch.zeros(5), torch.ones(5)],
            {"a": torch.zeros(5), "b": torch.ones(5)},
            torch.ones(6),
        )

        dynamic_shapes = (
            {0: torch.export.Dim("dim_x", min=3)},  # _Dim
            [("custom_name_axis_ys_0",), (torch.export.Dim.AUTO,)],  # custom name
            {
                "a": {0: torch.export.Dim.AUTO},
                "b": ("custom_name_axis_zs_b_0",),
            },  # _DimHint
            {0: "custom_name_axis_c_0"},  # custom name
        )

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146321
Approved by: https://github.com/justinchuby
2025-02-12 17:00:03 +00:00
PyTorch MergeBot
6aa924af68 Revert "[ONNX] Create deprecation warning on dynamo_export (#146425)"
This reverts commit 41e6d189a3.

Reverted https://github.com/pytorch/pytorch/pull/146425 on behalf of https://github.com/atalman due to Broke internal tests ([comment](https://github.com/pytorch/pytorch/pull/146425#issuecomment-2648472579))
2025-02-10 15:54:34 +00:00
PyTorch MergeBot
1557b7bf9a Revert "[ONNX] Adjust and add deprecation messages (#146639)"
This reverts commit 63c2909ae3.

Reverted https://github.com/pytorch/pytorch/pull/146639 on behalf of https://github.com/atalman due to Sorry Need to revert https://github.com/pytorch/pytorch/pull/146425 ([comment](https://github.com/pytorch/pytorch/pull/146639#issuecomment-2648465047))
2025-02-10 15:51:52 +00:00
Justin Chu
63c2909ae3 [ONNX] Adjust and add deprecation messages (#146639)
Adjust and add deprecation messages to torch.onnx utilities and verification methods because they are only related to torch script and are obsolete.

Removed unused `_exporter_states.py` and removed the internal deprecation module in favor of the typing_extensions deprecated decorator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146639
Approved by: https://github.com/titaiwangms
2025-02-08 05:09:16 +00:00
Justin Chu
41e6d189a3 [ONNX] Create deprecation warning on dynamo_export (#146425)
Reland #146003

Deprecation of `torch.onnx.dynamo_export`:

* [`torch/onnx/_internal/_exporter_legacy.py`]: Added deprecation warnings to the `OnnxRegistry`, `ExportOptions`, `ONNXRuntimeOptions`, and `dynamo_export` functions, indicating that `torch.onnx.dynamo_export` is deprecated since version 2.6.0 and should be replaced with `torch.onnx.export(..., dynamo=True)`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146425
Approved by: https://github.com/titaiwangms, https://github.com/atalman
2025-02-07 04:20:46 +00:00
Jack Zhang
ed309b9156 Re-add stft option to align window for center = false (#146379)
Skips advancing the fc window on https://github.com/pytorch/pytorch/pull/145437, since I just found that there were non-trivial efforts to do so a while ago that eventually was reverted: https://github.com/pytorch/pytorch/pull/73434

Works around the issue by keeping the stft sans center overload

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146379
Approved by: https://github.com/justinchuby, https://github.com/iseeyuan
2025-02-06 14:07:13 +00:00
Justin Chu
1f6b566d74 [ONNX] Bump onnx and onnxscript versions in CI (#146097)
Bump onnx onnxscript==0.1 in CI; Skipped onnxruntime 1.19 because it has regression on avgpool.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146097
Approved by: https://github.com/malfet
2025-02-05 21:00:25 +00:00
Aaron Gokaslan
292af3cc89 [BE][Ez]: ISC001 Auto concatenate implicit one line strings (#146408)
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2025-02-04 19:07:04 +00:00
titaiwangms
178531c95e [ONNX] torch.onnx.export(dynamo=True) changes optimization to default (#146187)
Fixes #145897
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146187
Approved by: https://github.com/justinchuby
2025-02-03 22:44:54 +00:00
PyTorch MergeBot
64fc9ff09c Revert "[ONNX] Create deprecation warning on dynamo_export (#146003)"
This reverts commit e6c39d37e9.

Reverted https://github.com/pytorch/pytorch/pull/146003 on behalf of https://github.com/atalman due to Broke internally ([comment](https://github.com/pytorch/pytorch/pull/146003#issuecomment-2631599314))
2025-02-03 17:17:14 +00:00
PyTorch MergeBot
4280232f21 Revert "Advance past fc window for stft center (#145437)"
This reverts commit 3ef1551f5a.

Reverted https://github.com/pytorch/pytorch/pull/145437 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks some slow trunk tests ([comment](https://github.com/pytorch/pytorch/pull/145437#issuecomment-2625840742))
2025-01-30 23:14:16 +00:00
Justin Chu
e6c39d37e9 [ONNX] Create deprecation warning on dynamo_export (#146003)
Deprecation of `torch.onnx.dynamo_export`:

* [`torch/onnx/_internal/_exporter_legacy.py`](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR83-R86): Added deprecation warnings to the `OnnxRegistry`, `ExportOptions`, `ONNXRuntimeOptions`, and `dynamo_export` functions, indicating that `torch.onnx.dynamo_export` is deprecated since version 2.6.0 and should be replaced with `torch.onnx.export(..., dynamo=True)`. [[1]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR83-R86) [[2]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR231-R234) [[3]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR442-R445) [[4]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR700-R703)

This PR also removed the `**_` kwarg on onnx.export such that users get an error when they supply an unexpected augument.

Updated to emit deprecation warning because it is more appropriate: https://docs.python.org/3/library/exceptions.html#DeprecationWarning
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146003
Approved by: https://github.com/titaiwangms
2025-01-30 20:13:32 +00:00
Jack Zhang
3ef1551f5a Advance past fc window for stft center (#145437)
Long overdue follow-up on https://github.com/pytorch/pytorch/pull/73432/files#diff-5f3d4caa0693a716fc46fd7f6339312f1b5f0bf89e3a3ff58e9dc13a9486b17aR719

Onnx stft doesn't support centering, [and all of the existing tests are for center = False](https://github.com/pytorch/pytorch/blob/main/test/onnx/test_pytorch_onnx_onnxruntime.py#L8026). I will open a follow-up issue to address this, this is just a nice-to-have.

Pr chain:
- -> [Advance past fc window for stft center #145437](https://github.com/pytorch/pytorch/pull/145437)
- [Add stft option to align window for center = false #145324](https://github.com/pytorch/pytorch/pull/145324)
- [Add istft option to align window for center = false](https://github.com/pytorch/pytorch/pull/145510)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145437
Approved by: https://github.com/justinchuby, https://github.com/iseeyuan
2025-01-30 19:09:18 +00:00
titaiwangms
50086ab537 [ONNX] Delete rename_dynamic_shapes_with_model_inputs (#146002)
Basically, this function brings more cons than pros.

It was nice to have an automation help users to convert top-level key of dynamic shapes to arg names. However, this function has a bug when the model input has the same amount as dynamic_shapes in coincidence:

```python
input_names
# 'input_ids', 'past_key_values.0.key', 'past_key_values.0.value', 'past_key_values.1.key', 'past_key_values.1.value', 'past_key_values.2.key', 'past_key_values.2.value', 'past_key_values.3.key', 'past_key_values.3.value', 'past_key_values.4.key', 'past_key_values.4.value', 'attention_mask', 'position_ids'

inspect.sig(model.forward).parameters
# mappingproxy(OrderedDict([('input_ids', <Parameter "input_ids: Optional[torch.LongTensor] = None">), ('past_key_values', <Parameter "past_key_values: Union[transformers.cache_utils.Cache, Tuple[Tuple[torch.Tensor]], NoneType] = None">), ('attention_mask', <Parameter "attention_mask: Optional[torch.FloatTensor] = None">), ('token_type_ids', <Parameter "token_type_ids: Optional[torch.LongTensor] = None">), ('position_ids', <Parameter "position_ids: Optional[torch.LongTensor] = None">), ('head_mask', <Parameter "head_mask: Optional[torch.FloatTensor] = None">), ('inputs_embeds', <Parameter "inputs_embeds: Optional[torch.FloatTensor] = None">), ('labels', <Parameter "labels: Optional[torch.LongTensor] = None">), ('use_cache', <Parameter "use_cache: Optional[bool] = None">), ('output_attentions', <Parameter "output_attentions: Optional[bool] = None">), ('output_hidden_states', <Parameter "output_hidden_states: Optional[bool] = None">), ('return_dict', <Parameter "return_dict: Optional[bool] = None">), ('cache_position', <Parameter "cache_position: Optional[torch.LongTensor] = None">)]))
```

In the above case, the given input_names is following onnx graph, while it has the same length as torch model forward call. This kind of case makes it difficult to detect, and automate for users.

On the other hand, the error message from torch.export.export is quite informative that I believe users will know how to go from there:

```python

import torch

class Model(torch.nn.Module):
    def forward(self, x=None, y=None):
        return x + y

dim = torch.export.Dim("x", min=1, max=6)
onnx_program = torch.export.export(
    Model(),
    (),
    kwargs={"x": torch.randn(2, 3), "y": torch.randn(2, 3)},
    dynamic_shapes={"custom_input_x": {0: dim}, "custom_input_y": {0: dim}},
)

# torch._dynamo.exc.UserError: When `dynamic_shapes` is specified as a dict, its top-level keys must be the arg names ['x', 'y'] of `inputs`, but here they are ['custom_input_x', 'custom_input_y']. Alternatively, you could also ignore arg names entirely and specify `dynamic_shapes` as a list/tuple matching `inputs`. For more information about this error, see: https://pytorch.org/docs/main/generated/exportdb/index.html#dynamic-shapes-validation
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146002
Approved by: https://github.com/justinchuby
2025-01-30 16:01:38 +00:00
Justin Chu
776bdb962c [ONNX] Support subgraphs with 1+ outputs (#145860)
Fixed a bug in _handle_output_node where additional output values were not added as graph outputs

Fixes #145734
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145860
Approved by: https://github.com/titaiwangms
2025-01-29 04:13:23 +00:00
Justin Chu
af43b445a5 [ONNX] Set USE_EXPERIMENTAL_LOGIC to True (#137296)
This sets dynamo_export to use the new export logic. The legacy dynamo export logic will be removed as a follow up.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137296
Approved by: https://github.com/titaiwangms
2025-01-28 22:35:11 +00:00
Randolf Scholz
835e770bad Use typing.IO[bytes] instead of io.BytesIO in annotations (#144994)
Fixes #144976

Using appoach ① `IO[bytes]`, but could also try with a protocol.

## Notes:

- moved `torch.serialization.FILE_LIKE` to `torch.types.FileLike`
- Use `FileLike` annotation where it makes sense
- made sure those functions also support `os.PathLike`
- Replaced `isinstance(x, io.BytesIO)` with `isinstance(x, (io.IOBase, IO))` where appropriate.
- Replaced `BinaryIO` with `IO[bytes]` (the two ABCs are almost identical, the only difference is that `BinaryIO` allows `bytearray` input to `write`, whereas `IO[bytes]` only `bytes`)
- needed to make `torch.serialization._opener` generic to avoid LSP violations.
- skipped `torch/onnx/verification` for now (functions use `BytesIO.getvalue` which is not part of the `IO[bytes]` ABC, but it kind of seems that this is redundant, as e.g. `onnx.load` supports `str | PathLike[str] | IO[bytes]` directly...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144994
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-01-27 18:08:07 +00:00
Justin Chu
f52901a0a7 [ONNX] Remove LegacyDynamoStrategy (#145442)
It's legacy. So remove. Shouldn't affect anything and will facilitate cleaning up our legacy code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145442
Approved by: https://github.com/titaiwangms
2025-01-23 07:56:04 +00:00
Aaron Orenstein
2b809e58ad PEP585 update - torch/onnx (#145174)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145174
Approved by: https://github.com/justinchuby
2025-01-20 05:48:52 +00:00
Justin Chu
fb4b5a9299 [ONNX] Use python_dispatcher in type promotion (#144801)
Fix #143118

Use python_dispatcher in the type promotion pass to preserve symbolic shapes according to @angelayi 's suggestions. (Thanks!)

Tested locally. I wasn't able to create a minimal repro except for using the full model
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144801
Approved by: https://github.com/titaiwangms
2025-01-15 23:25:19 +00:00
Leo Yang
40305dd37e [onnx] Fix bug for exporting torch.cdist into onnx and support 'compute_mode' (#144213)
### Fix bug for exporting torch.cdist and support 'compute_mode'
In [cdist,](https://github.com/pytorch/pytorch/blob/main/torch/onnx/symbolic_opset9.py#L6181) the 'compute_mode' was ignored, which leads to a big difference of the computation flow between original torch.cdist and the exported onnx file when computing Euclidean distance (p=2). For computing Euclidean distance, the running of exported onnx model will be 10x slower than running torch.cdist directly, and also very likely to cause CUDA OOM for larger matrixes unnecessarily.

This code is going for exporting the same onnx computation flow with the forward of  torch.cdist defined at [forward implementation](9225f149eb/aten/src/ATen/native/Distance.cpp (L66-L149).) under every compute_mode.

Fixes #144212

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144213
Approved by: https://github.com/justinchuby
2025-01-09 20:07:20 +00:00
titaiwangms
78eded8e00 [ONNX] Use torch.export.Dim.AUTO in dynamo_export (#144356)
Align to the changes in https://github.com/pytorch/pytorch/pull/143158
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144356
Approved by: https://github.com/justinchuby
2025-01-08 05:00:16 +00:00
Justin Chu
7c9cf287c2 [ONNX] Handle list values as 0d inputs (#144343)
Handle list values as 0d inputs instead of 1d, as the `SymInt`s are expected to be 0d tensors in ONNX.

This PR reshapes int64 values into 1D tensors in a list, assuming they are 0D tensors initially.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144343
Approved by: https://github.com/gramalingam, https://github.com/titaiwangms
2025-01-08 00:15:50 +00:00
PyTorch MergeBot
99f2491af9 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 45411d1fc9.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/jeanschmidt due to Breaking internal CI, @albanD please help get this PR merged ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2571316444))
2025-01-04 14:17:20 +00:00
bobrenjc93
64bffb3124 remove allow-untyped-defs onnx/_internal/exporter/_fx_passes.py (#144134)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144134
Approved by: https://github.com/Skylion007
2025-01-03 20:18:40 +00:00
bobrenjc93
9b8a4e7141 remove allow-untyped-defs from torch/onnx/operators.py (#144133)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144133
Approved by: https://github.com/Skylion007
2025-01-03 20:07:56 +00:00
Xuehai Pan
45411d1fc9 Use absolute path path.resolve() -> path.absolute() (#129409)
Changes:

1. Always explicit `.absolute()`: `Path(__file__)` -> `Path(__file__).absolute()`
2. Replace `path.resolve()` with `path.absolute()` if the code is resolving the PyTorch repo root directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129409
Approved by: https://github.com/albanD
2025-01-03 20:03:40 +00:00
bobrenjc93
7101b8ca35 remove allow-untyped-defs from onnx/_internal/_lazy_import.py (#143943)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143943
Approved by: https://github.com/justinchuby
2024-12-29 10:29:43 +00:00
PyTorch MergeBot
cc4e70b7c3 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 135c7db99d.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/malfet due to need to revert to as dependency of https://github.com/pytorch/pytorch/pull/129374 ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2562969825))
2024-12-26 17:26:06 +00:00
Xuehai Pan
b77406a9ec [BE][CI] bump ruff to 0.8.4 (#143753)
Changes:

1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
2024-12-24 12:24:10 +00:00
Xuehai Pan
135c7db99d Use absolute path path.resolve() -> path.absolute() (#129409)
Changes:

1. Always explicit `.absolute()`: `Path(__file__)` -> `Path(__file__).absolute()`
2. Replace `path.resolve()` with `path.absolute()` if the code is resolving the PyTorch repo root directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129409
Approved by: https://github.com/albanD
2024-12-24 08:33:08 +00:00
Yanan Cao (PyTorch)
d547fae5b0 [Codemod][AddExplicitStrictExportArg] caffe2/torch/onnx/_internal/exporter (#143542)
Reviewed By: avikchaudhuri

Differential Revision: D67381244

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143542
Approved by: https://github.com/ydwu4, https://github.com/titaiwangms
2024-12-20 00:54:52 +00:00
titaiwangms
b23f11c529 [ONNX] Automatically convert dynamic_axes to dynamic_shapes with torch.export.Dim.AUTO (#143158)
With https://github.com/pytorch/pytorch/pull/133620 introducing Dim.AUTO, we can now automatically convert dynamic_axes to dynamic_shapes without specifying min and max. However, exporting still could be crashed when there are same specs shared between inputs and there is no guarantee that the axes will be dynamic (see PR description).

~~Therefore, a~~ follow-up PR should create a post-processing ONNX side pass to ~~enable the missed dynamic axes~~ rename the dynamic shapes (s0,  s1, ...) to dynamic_axes (user setting names).

This PR does:
(1) Apply torch.export.Dim.AUTO to dynamic_axes when dynamic_shapes is not provided.
(2) Convert args/kwargs to tuple inputs, which follows the generated dynamic_shapes format to avoid errors during torch.export.export.
(3) Avoid KeyError in _rename_dynamic_shapes_with_model_inputs funtion.
(4) Add real world case of a HF model with kv_cache to test on ONNX exporter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143158
Approved by: https://github.com/xadupre, https://github.com/shubhambhokare1
2024-12-18 23:49:01 +00:00
xadupre
678f74988d Fix a misspelling [ONNX] (#143301)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143301
Approved by: https://github.com/titaiwangms
2024-12-16 20:19:41 +00:00
titaiwangms
0ddb33ba22 [ONNX] Avoid overwriting overlapped decomposed functions (#142831)
Fixes #141770

The decomposed function in `torch.export.default_decompositions().items()` is overwritten by `torch._decomp.decomposition_table`. As from `torch.onnx.export()` perspective, we should rather respect the table of decompositions in `torch.export.default_decompositions().items()` and avoid overwriting it with `torch._decomp.decomposition_table.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142831
Approved by: https://github.com/justinchuby
2024-12-11 18:47:40 +00:00
Fabian Keller
5e8e1d725a Remove some unused type ignores (round 1) (#142325)
Over time, a large number of the existing type ignores have become irrelevant/unused/dead as a result of improvements in annotations and type checking.

Having these `# type: ignore` linger around is not ideal for two reasons:

- They are verbose/ugly syntatically.
- They could hide genuine bugs in the future, if a refactoring would actually introduce a bug but it gets hidden by the ignore.

I'm counting over 1500 unused ignores already. This is a first PR that removes some of them. Note that I haven't touched type ignores that looked "conditional" like the import challenge mentioned in https://github.com/pytorch/pytorch/pull/60006#issuecomment-2480604728. I will address these at a later point, and eventually would enable `warn_unused_ignores = True` in the mypy configuration as discussed in that comment to prevent accumulating more dead ignores going forward.

This PR should have no effect on runtime at all.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142325
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
2024-12-09 18:23:46 +00:00
Fabian Keller
8cb68b136f Proper modeling of recursive types (#142300)
Currently there are a few type annotations that falsely state that mypy doesn't support recursive types.

Recursive type support is available in mypy for a few years already. It has been officially enabled in [version 0.991](https://mypy-lang.blogspot.com/2022/11/mypy-0990-released.html). Pyright even had support for recursive types earlier (https://github.com/microsoft/pyright/issues/569), so there is probably no reason not to model these types correctly.

This PR models these types properly now. Since this has turned a few implicit `Any` into fully typed variables that are not narrowed cleanly, a small number of type ignores were necessary.

Note that regarding the `Argument` it is desirable to model it in a covariant way (i.e. using `Sequence` and `Mapping`) instead of making it invariant unnecessarily (using `List` and `Dict`). If it were modeled invariant, it would for instance mean that a `List[Node]` would not type check as `Argument`, because invariance would mean that it really has to be a `List[Argument]` (i.e., including all the branches of the union type). Since even the name of the type "argument" strongly suggest that it is semantically used as "argument", having covariance natural anyway.

There are no chances in this PR that affect runtime behavior.

CC @Skylion007

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142300
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2024-12-07 21:30:45 +00:00
Bludator
f4187050fe [ONNX] Remove special handling of torchvision.ops imports in onnx export (#141569)
Fixes #141568

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141569
Approved by: https://github.com/titaiwangms

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
Co-authored-by: Ti-Tai Wang <titaiwang@microsoft.com>
2024-11-28 18:05:40 +00:00
Justin Chu
419b566e54 [ONNX] Use the torchlib opset number and fix opset import logic (#141413)
- Update the ONNX IR `add_opset_imports` pass to remove the heuristics of taking the `max` of the seen opsets. Instead, it uses the torchlib default opset version for the model's opset_import. The version converter is able to take the true opset versions in the nodes and convert the model to the correct version.
- Update all hard coding of opset 18 to instead query the default torchlib opset from onnxscript, introduced in https://github.com/microsoft/onnxscript/pull/1963

Fixes https://github.com/pytorch/pytorch/issues/141260
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141413
Approved by: https://github.com/titaiwangms
2024-11-25 17:33:25 +00:00
Edward Z. Yang
612122af8f Fix type-safety of torch.nn.Module instances (#141240)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141240
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-11-22 00:05:05 +00:00
Justin Chu
8e359a65f3 [ONNX] Use IRv10 (#141207)
Update to use IRv10 to support INT4 types and ValueInfo in functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141207
Approved by: https://github.com/titaiwangms
2024-11-21 16:34:35 +00:00
xadupre
0a4bcbf39c [ONNX] Add support for torch.cond/HOP in onnx exporter (#137428)
This PR implements the framework for supporting HOP in the ONNX exporter. Refer to https://github.com/pytorch/pytorch/issues/140995 for the design.

- Implement support for torch.cond
- Refactor `_add_nodes` into `_translate_fx_graph` to handle nested subgraphs. To support building subgraphs as functions using the same logic, new handlers for `placeholder` and `output` nodes are added to register inputs and outputs on the onnx function.
- Fuctions are created under the domain of `pkg.torch.__subgraph__`
- Updated the type promotion pass to run on nested subgraphs.
- Implement torch.cond in `_torchlib/ops/hop.py`. Updated the registry to discover these ops.
- Improve opset_import handling robustness with `add_opset_imports` IR pass. To achieve this, we added opset version to all Nodes. Fixes https://github.com/pytorch/pytorch/issues/139503

Fixes #117655 Fixes #123972 Fixes #93743 Closes https://github.com/pytorch/pytorch/issues/140995

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137428
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-11-21 03:02:43 +00:00
Aaron Gokaslan
12e95aa4ee [BE]: Apply PERF401 autofixes from ruff (#140980)
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-11-20 17:52:07 +00:00
titaiwangms
8e439021c1 [ONNX] Support from dynamic_shapes to dynamic_axes when torch.onnx.export(fallback=True) is triggered (#139532)
Fixes #139320

### Summary:
#### (1) Add  `_rename_dynamic_shapes_with_model_inputs` for dynamic_shapes to play along with input_names

* Use model forward signature to rename dynamic_shapes when dynamic_shapes is not nested and dynamic_shapes is directly using the customized name. This solves the issue that torch.export.export expects dynamic_shapes only uses the model input names.
* If the dynamic_shapes is nested, we do nothing.

#### (2) Add `_from_dynamic_shapes_to_dynamic_axes` for fallback

* We flatten dynamic_shapes with leaf defined _pytree.tree_leaves()
~~* If a dynamic_shapes is not nested, and defined in dict. We can use the key as the input_names, since it should be renamed by `_rename_dynamic_shapes_with_model_inputs` already.~~
* If a dynamic_shapes is provided, input_names is required to assign the names, because dynamic_axes needs it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139532
Approved by: https://github.com/justinchuby
2024-11-18 22:35:21 +00:00
titaiwangms
e445239bb4 [ONNX] Fix 2GB exporting crash during onnx shape type inference (#140962)
Fixes https://github.com/pytorch/pytorch/issues/132205

Regression happened after https://github.com/pytorch/pytorch/pull/128675 that ONNX shape type inference error stops the exporting process during shape type inference. ONNX shape type inference during the export only does it's best to fulfill the information, and should not crash the export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140962
Approved by: https://github.com/justinchuby
2024-11-18 21:50:23 +00:00
titaiwangms
865a7c5238 [ONNX] Improve the conversion of from dynamic axes to shapes (#140488)
Features:
(1) Add support for tree structure.
(2) Add user warning before axes to shapes conversion
(3) Add suggestion of providing `dynamic_shapes` when conversion fails

Notes:
(1) `input_names` is crucial to the conversion, as we don't know the ONNX graph inputs.
(2) min and max are set as default, so LLM has higher chance to fail if users use `dynamic_axes` in terms of the min/max constraints dependency between `attention_mask` and `sequence_length`, etc. (Found in llama-3.2-1B_Instruct)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140488
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-11-15 04:26:45 +00:00
Justin Chu
94824766e6 [ONNX] Separate decomp into single step and add to the report (#140767)
1. Fix the ordering of the error report entries so non-strict show on top
2. Isolate run_decomposition into a separate step because it sometimes fails. This makes it easier for users to understand what failed

Fix https://github.com/pytorch/pytorch/issues/140762 Fix https://github.com/pytorch/pytorch/issues/137638
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140767
Approved by: https://github.com/titaiwangms
2024-11-15 04:26:16 +00:00
titaiwangms
b1d6250028 [ONNX] Use TracedONNXFunction op signature to promote inputs to tensors (#138770)
Previous to this PR, in torchlib TracedONNXFunction, the inputs could be python constants even if the annotation sets to TensorTypes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138770
Approved by: https://github.com/justinchuby
2024-11-14 03:15:07 +00:00
Justin Chu
f85e4338d4 [ONNX] Remove the contiguous patch (#140428)
Remove the contiguous patch because it is no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140428
Approved by: https://github.com/titaiwangms
2024-11-14 00:03:17 +00:00
Tugsbayasgalan Manlaibaatar
0af38b1034 Remove temp table to post autograd IR (#140085)
This table is not needed

Differential Revision: [D64553397](https://our.internmc.facebook.com/intern/diff/D64553397/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140085
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-11-11 23:59:09 +00:00
Justin Chu
780b28f67e [ONNX] Update docstring typo in building (#140281)
The oprecorder docstring mistakenly referred to torchscript when it should say ONNX IR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140281
Approved by: https://github.com/titaiwangms
2024-11-11 21:01:27 +00:00
Justin Chu
3368f3ad41 [ONNX] Update TorchTensor implementation to handle fake mode (#139534)
Update TorchTensor implementation to handle fake mode better. Specifically, we disable fake mode before calling detach() etc. when getting the weights if it is already a real tensor so we do not lose it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139534
Approved by: https://github.com/fatcat-z, https://github.com/titaiwangms
2024-11-07 04:36:24 +00:00
sgui/a3213105
4ddf015e7d [ONNX export] exporting model to onnx error when tensor.index_fill ops met dim=0 #139594 (#139596)
When fill_index op's param dim==0, there is no need to unsqueeze the index tensor's dimension. So we return index tensor directly if ths size of axes_i == 0

Fixes #139594

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139596
Approved by: https://github.com/justinchuby
2024-11-07 01:32:34 +00:00
Justin Chu
86475dfc9f [ONNX] Prioritize strict=False export strategy (#139905)
Prioritize the `strict=False` export strategy in ONNX export because it is preferred according to @SherlockNoMad
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139905
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2024-11-06 21:27:29 +00:00
Justin Chu
387b120549 [ONNX] Remove type promotion rule for pow (#139527)
ONNX supports different input types in Pow, so type promotion is not needed.

The resulting graph is the following:

```py
ONNXProgram(
    model=
        <
            ir_version=9,
            opset_imports={'': 18, 'pkg.onnxscript.torch_lib.common': 1},
            producer_name='pytorch',
            producer_version='2.6.0a0+git59a1af5',
            domain=None,
            model_version=None,
        >
        graph(
            name=main_graph,
            inputs=(
                %"x"<FLOAT16,[3]>
            ),
            outputs=(
                %"pow_1"<FLOAT16,[3]>
            ),
        ) {
            0 |  # node_Constant_0
                 %"val_0"<?,?> ⬅️ ::Constant() {value=Tensor<FLOAT,[]>(array(2., dtype=float32), name=None)}
            1 |  # node_Pow_1
                 %"pow_1"<FLOAT16,[3]> ⬅️ ::Pow(%"x", %"val_0")
            return %"pow_1"<FLOAT16,[3]>
        }
...
    ,
    exported_program=
        ExportedProgram:
            class GraphModule(torch.nn.Module):
                def forward(self, x: "f16[3]"):
                     # File: /workspace/pytorch/test/onnx/exporter/test_small_models_e2e.py:53 in forward, code: return x**2.0
                    pow_1: "f16[3]" = torch.ops.aten.pow.Tensor_Scalar(x, 2.0);  x = None
                    return (pow_1,)

        Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='pow_1'), target=None)])
        Range constraints: {}

)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139527
Approved by: https://github.com/titaiwangms
2024-11-02 02:19:50 +00:00
Justin Chu
5d67efb809 [ONNX] New registration API (#135403)
The ONNX custom ops registration API.

## Design

1. Create a "custom_translation_table: dict[Callable, Sequence[Callable] | Callable" parameter for specifying extra functions
2. Use a callable as the key to support all possible call_function targets in the fx graph
3. Allow a callable or a Sequence of callables as values.
		- When there is a single callable, it is the translation function for the op
		- When there is a Sequence of callable, the exporter's dispatcher will dispatch to these callables in order based on input dtypes.
		- The translation functions can be a plain python function that calls onnxscript ops (traced), or an onnxscript function.
		- Complex input support: We create special type annotations for annotating real representations of complex inputs, which are needed to handle complex computation in the ONNX graph, as we don't have any ops in ONNX that handle complex inputs. The dispatcher will have knowledge of these newly created type annotations and dispatch correctly. The complex functions will be in the same overload pool as the real functions.

```py
torch.onnx.export(dynamo=True,
	custom_translation_table = {
	torch.ops.aten.add: [overload1, overload2],
	torch.sym_not: sym_not_onnx,
})
```
Support for functions that handles complex inputs will be in separate PRs.

fixes https://github.com/pytorch/pytorch/issues/138391

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135403
Approved by: https://github.com/titaiwangms
2024-11-01 20:58:54 +00:00
Xuehai Pan
86d4b7d60b [FX][export][dynamo] use tuple instead of list in normalized args_spec (#138212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138212
Approved by: https://github.com/jansel
2024-10-25 06:43:55 +00:00
titaiwangms
cab5f54dee [ONNX] Fix sequence handling in graph building (#138656)
Previous to this PR, op.Concat is called without required attributes: axis, and val and arg seems wrongly coded.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138656
Approved by: https://github.com/justinchuby
2024-10-23 07:47:58 +00:00
titaiwangms
72dde6e84b [ONNX] Avoid optimize onnx_dynamo-fallback (#138265)
Previous to this PR, when a model fails to be exported, it falls back to try with the legacy torchscript exporter. However, we didn't stop when it's exported with torchscript exporter, an optimization is applied to the graph.

It's ideal that the optimization can also boost the performance of the model exported with the legacy torchscript exporter, but currently, for benchmarking purpose and what fallback guarantee to the users, we should keep it simple and only return the graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138265
Approved by: https://github.com/xadupre, https://github.com/justinchuby
2024-10-23 04:13:32 +00:00
Ti-Tai Wang
a71723bf12 [ONNX] Add complex constant support (#138279)
Transform complex python constant to float representation as well, like what we have with tensors.

PS: I find it's not reasonable to add "complex->float" in IR side, so I put it here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138279
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-10-22 19:42:59 +00:00
Justin Chu
c6609ece84 [ONNX] Remove deprecated export_to_pretty_string (#137790)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137790
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
ghstack dependencies: #137789
2024-10-21 18:17:48 +00:00
Justin Chu
6e38c87ad0 [ONNX] Remove ExportTypes (#137789)
Remove deprecated ExportTypes and the `_exporter_states` module. Only protobuf (default) is supported going forward.

Differential Revision: [D64412947](https://our.internmc.facebook.com/intern/diff/D64412947)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137789
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2024-10-21 17:50:28 +00:00
Tom Ritchford
c0582fd0f8 Remove unused Python variables in torch/[b-z]* (#136963)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136963
Approved by: https://github.com/ezyang
2024-10-19 16:45:22 +00:00
Tugsbayasgalan Manlaibaatar
1f32a1fb80 Replace torch.export default decomp table to be lazily populated (#137650)
In this PR, we implement lazy dictionary for export decomp behaviour for following reasons:
1. Custom op loading can happen after import time, as a result, the decomp table might not be able to pick up the decomp. Therefore we try to delay materialization as late as possible.

I intentionally seperated out the core_aten_decomp to not have any custom CIA ops in this PR to mitigate the risk of getting reverted but in the future, core_aten_decomp under torch/_decomp will exist as an alias to official export table (torch.export.default_decompositions)

Differential Revision: [D64140807](https://our.internmc.facebook.com/intern/diff/D64140807)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137650
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-10-18 19:28:52 +00:00
PyTorch MergeBot
60eb3fccfa Revert "[ONNX] Remove ExportTypes (#137789)"
This reverts commit 3e0b83ad1f.

Reverted https://github.com/pytorch/pytorch/pull/137789 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/137789#issuecomment-2414632100))
2024-10-15 17:40:06 +00:00
PyTorch MergeBot
2831af39c4 Revert "[ONNX] Remove deprecated export_to_pretty_string (#137790)"
This reverts commit d0628a7e39.

Reverted https://github.com/pytorch/pytorch/pull/137790 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/137789#issuecomment-2414632100))
2024-10-15 17:40:06 +00:00
Avik Chaudhuri
ed55d356de [alt] fix unroll in successive unflatten (#137646)
We use nn_module_stack in unflatten to recognize when module calls begin and end. However the current format is not sufficient to detect module call boundaries when we have successive calls to the same module, because the successive instructions (end of one call, begin of next call) have the same nn_module_stack. This causes us to effectively "unroll" successive calls to a single call. This can cause problems when preserving module call signatures because the outputs of the successive calls might be concatenated in the single call.

Previously we introduced the concept of a "call index" to generate multiple graphs when unflattening, one per call. This PR pushes this concept into nn_module_stack itself. In particular, the keys of nn_module_stack now go from `key` to `key@call_index`. (In a previous attempt, https://github.com/pytorch/pytorch/pull/137457, instead values in nn_module_stack go from (fqn, type) to (fqn, type, call_index), which is BC-breaking.)

Note that we still do not have the ability to preserve module call signatures for multiple calls to the same module. But now instead of randomly crashing we give a proper error. OTOH when not preserving module call signatures we simply generate multiple calls, each with its own graph, possibly deduplicated, matching what we would do for non-successive calls.

Test Plan: Like D64014936

Differential Revision: D64136277

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137646
Approved by: https://github.com/angelayi
2024-10-12 15:53:52 +00:00
Justin Chu
d0628a7e39 [ONNX] Remove deprecated export_to_pretty_string (#137790)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137790
Approved by: https://github.com/titaiwangms
ghstack dependencies: #137789
2024-10-11 20:10:04 +00:00
Justin Chu
3e0b83ad1f [ONNX] Remove ExportTypes (#137789)
Remove deprecated ExportTypes and the `_exporter_states` module. Only protobuf (default) is supported going forward.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137789
Approved by: https://github.com/titaiwangms
2024-10-11 19:29:52 +00:00
Justin Chu
c37bb492da [ONNX] Create an optimize method in ONNXProgram (#137667)
Move optimization from the export call to the `optimize()` method in ONNXProgram.

Users can call `optimize()` before calling `save()` to save the model. Right now if users set `optimize=True` in `torch.onnx.export` it will have the same effect as calling `optimize()`, but in the future we can evolve the method to be more flexible (e.g. target aware etc.)

Example

```python
onnx_program = torch.onnx.export(..., dynamo=True)
onnx_program.optimize()
onnx_program.save("model.onnx")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137667
Approved by: https://github.com/titaiwangms
ghstack dependencies: #137666
2024-10-10 22:44:19 +00:00
Justin Chu
e75984cd31 [ONNX] Use torch_2_6 apis from onnxscript (#137666)
Create an `optimize=False` option in `torch.onnx.export` for model optimization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137666
Approved by: https://github.com/titaiwangms
2024-10-10 22:23:15 +00:00
Justin Chu
018dabff20 [ONNX] Implement patch for jit.isinstance (#137592)
Patch torch.jit.isinstance for users for models to be dynamo exportable. Replaces https://github.com/pytorch/pytorch/pull/137487.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137592
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2024-10-09 18:06:52 +00:00
xadupre
7267363844 [ONNX] Insert contiguous node between transpose and view before calling run_decompositions (#137340)
Works around #136543.

This fix solves the issue only in the context of the ONNX exporter but this issue happens in other context.

The bug happens when method `run_decompositions` is called. The failing pattern is assumed to be ``view(transpose(x, ...))``. This pattern is replaced by ``view(flatten(transpose(x, ..)))``. By changing the dimensions, the strides are updated as well and `run_decompositions` does not fail anymore. It would be inefficient on a 1D tensor but then transpose would not be used. The extra node appears in the final onnx graph but is removed after optimization. The final onnx graph should not be impacted and no performance loss should be observed for the onnx model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137340
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-10-08 16:45:59 +00:00
Justin Chu
cfcd0e1fe9 [ONNX] Update the faketensor documentation (#137292)
Update the faketensor documentation to reflect current usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137292
Approved by: https://github.com/shubhambhokare1, https://github.com/sdpython
2024-10-03 23:27:11 +00:00
Edward Z. Yang
6bd9d37266 Remove allow-untyped-defs from torch.fx.experimental.symbolic_shapes (#137019)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137019
Approved by: https://github.com/Skylion007
ghstack dependencies: #136934, #136935, #136972
2024-10-01 13:22:10 +00:00
Justin Chu
1be3d62237 [ONNX] Remove unused functions (#136609)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136609
Approved by: https://github.com/Skylion007
2024-09-27 14:34:05 +00:00
Justin Chu
780f4debdb [ONNX] Remove _optimize_graph from public init (#136279)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136279
Approved by: https://github.com/xadupre
ghstack dependencies: #136281
2024-09-24 22:00:55 +00:00
Justin Chu
7c777dd587 [ONNX] Unify ONNXProgram and remove the old one (#136281)
## Note

`test_fx_to_onnx_with_onnxruntime.py` is removed for now (it has a lot of xfails anyways). A better version will be added back.

Fixes https://github.com/pytorch/pytorch/issues/136274

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136281
Approved by: https://github.com/xadupre, https://github.com/albanD
2024-09-24 20:52:19 +00:00
Justin Chu
58274e4655 Remove onnx imports in dynamo (#136334)
Remove imports of the ``torch.onnx.operators`` module in dynamo. Since ONNX depends on dynamo, this import line causes a circular dependency. Judging from the source they are not actually needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136334
Approved by: https://github.com/xadupre, https://github.com/jansel, https://github.com/titaiwangms
2024-09-24 14:54:23 +00:00
Igor Sugak
bce52d0b60 [CODEMOD][caffe2] use npt.NDArray instead of np.ndarray in type annotations (#136288)
Summary:
To facilitate PSS-2 upgrade, this uses `ndt.NDArray` instead of `nd.ndarray` in type annotations. In Numpy-1.19 (PSS-1) it's an alias to `nd.ndarray` -- a noop.
In Numpy-1.24, `ndt.NDArray` a proper generic type, and without this change uses of `nd.ndarray` generate this Pyre type error:
```counterexample
 Invalid type parameters [24]: Generic type `np.ndarray` expects 2 type parameters.
```

Test Plan: Sandcastle plus visual inspection

Differential Revision: D62977370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136288
Approved by: https://github.com/kit1980
2024-09-19 12:40:36 +00:00
Justin Chu
67b14ce8bd [ONNX] Fix numpy method to return the correct type (#136162)
Previous implementation of the `numpy()` method returns `fp64` when the tensor is `fp32`. This is unexpected but seems to be caused by calling `__array__(dtype=None)` on the numpy array. I updated the implementation to implement the `numpy()` method explicitly and added tests to guard the behavior.

This needs to be cherry-picked into torch 2.5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136162
Approved by: https://github.com/gramalingam, https://github.com/xadupre
2024-09-17 15:51:00 +00:00
Justin Chu
c12536b3c0 [ONNX] Treat CompositeImplicitAutograd ops as normal ops in decomp (#136153)
Since https://github.com/pytorch/pytorch/pull/135080, the CompositeImplicitAutograd (CIA) ops are only decomposed when a decomp function is provided in a table. There is no longer a need to distinguish CIA ops like Upsample and preserve them explicitly. On the ONNX Script torchlib side I will unregister some ops from the following list to make sure some CIA ops are still decomposed.

```
<OpOverload(op='aten.__and__', overload='Scalar')>,
 <OpOverload(op='aten.__and__', overload='Tensor')>,
 <OpOverload(op='aten.__or__', overload='Scalar')>,
 <OpOverload(op='aten.__or__', overload='Tensor')>,
 <OpOverload(op='aten.__xor__', overload='Scalar')>,
 <OpOverload(op='aten.__xor__', overload='Tensor')>,
 <OpOverload(op='aten._add_batch_dim', overload='default')>,
 <OpOverload(op='aten._assert_tensor_metadata', overload='default')>,
 <OpOverload(op='aten._backward', overload='default')>,
 <OpOverload(op='aten._batch_norm_impl_index_backward', overload='default')>,
 <OpOverload(op='aten._cast_Byte', overload='default')>,
 <OpOverload(op='aten._cast_Char', overload='default')>,
 <OpOverload(op='aten._cast_Double', overload='default')>,
 <OpOverload(op='aten._cast_Float', overload='default')>,
 <OpOverload(op='aten._cast_Half', overload='default')>,
 <OpOverload(op='aten._cast_Int', overload='default')>,
 <OpOverload(op='aten._cast_Long', overload='default')>,
 <OpOverload(op='aten._cast_Short', overload='default')>,
 <OpOverload(op='aten._choose_qparams_per_tensor', overload='default')>,
 <OpOverload(op='aten._convolution', overload='deprecated')>,
 <OpOverload(op='aten._convolution_double_backward', overload='default')>,
 <OpOverload(op='aten._convolution_mode', overload='default')>,
 <OpOverload(op='aten._cufft_clear_plan_cache', overload='default')>,
 <OpOverload(op='aten._cufft_get_plan_cache_max_size', overload='default')>,
 <OpOverload(op='aten._cufft_get_plan_cache_size', overload='default')>,
 <OpOverload(op='aten._cufft_set_plan_cache_max_size', overload='default')>,
 <OpOverload(op='aten._debug_has_internal_overlap', overload='default')>,
 <OpOverload(op='aten._dim_arange', overload='default')>,
 <OpOverload(op='aten._embedding_bag_sparse_backward', overload='default')>,
 <OpOverload(op='aten._gather_sparse_backward', overload='default')>,
 <OpOverload(op='aten._grid_sampler_2d_cpu_fallback_backward', overload='default')>,
 <OpOverload(op='aten._has_compatible_shallow_copy_type', overload='default')>,
 <OpOverload(op='aten._is_zerotensor', overload='default')>,
 <OpOverload(op='aten._lu_with_info', overload='default')>,
 <OpOverload(op='aten._nnpack_available', overload='default')>,
 <OpOverload(op='aten._pack_padded_sequence_backward', overload='default')>,
 <OpOverload(op='aten._pad_circular', overload='default')>,
 <OpOverload(op='aten._pad_enum', overload='default')>,
 <OpOverload(op='aten._pad_packed_sequence', overload='default')>,
 <OpOverload(op='aten._propagate_xla_data', overload='default')>,
 <OpOverload(op='aten._remove_batch_dim', overload='default')>,
 <OpOverload(op='aten._reshape_from_tensor', overload='default')>,
 <OpOverload(op='aten._rowwise_prune', overload='default')>,
 <OpOverload(op='aten._saturate_weight_to_fp16', overload='default')>,
 <OpOverload(op='aten._scaled_dot_product_attention_math', overload='default')>,
 <OpOverload(op='aten._shape_as_tensor', overload='default')>,
 <OpOverload(op='aten._sobol_engine_draw', overload='default')>,
 <OpOverload(op='aten._sparse_bsc_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_bsr_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_compressed_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_coo_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_csc_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_csr_tensor_unsafe', overload='default')>,
 <OpOverload(op='aten._sparse_log_softmax', overload='Dimname')>,
 <OpOverload(op='aten._sparse_log_softmax', overload='int')>,
 <OpOverload(op='aten._sparse_mm', overload='default')>,
 <OpOverload(op='aten._sparse_mm', overload='reduce')>,
 <OpOverload(op='aten._sparse_softmax', overload='Dimname')>,
 <OpOverload(op='aten._sparse_softmax', overload='int')>,
 <OpOverload(op='aten._sparse_sum', overload='default')>,
 <OpOverload(op='aten._sparse_sum', overload='dim_dtype')>,
 <OpOverload(op='aten._sparse_sum', overload='dtype')>,
 <OpOverload(op='aten._test_ambiguous_defaults', overload='a')>,
 <OpOverload(op='aten._test_ambiguous_defaults', overload='b')>,
 <OpOverload(op='aten._test_autograd_multiple_dispatch', overload='ntonly')>,
 <OpOverload(op='aten._test_check_tensor', overload='default')>,
 <OpOverload(op='aten._test_serialization_subcmul', overload='default')>,
 <OpOverload(op='aten._test_string_default', overload='default')>,
 <OpOverload(op='aten._thnn_differentiable_gru_cell_backward', overload='default')>,
 <OpOverload(op='aten._thnn_differentiable_lstm_cell_backward', overload='default')>,
 <OpOverload(op='aten._thnn_fused_lstm_cell_backward', overload='default')>,
 <OpOverload(op='aten._to_cpu', overload='default')>,
 <OpOverload(op='aten._upsample_bicubic2d_aa', overload='vec')>,
 <OpOverload(op='aten._upsample_bilinear2d_aa', overload='vec')>,
 <OpOverload(op='aten._upsample_nearest_exact1d', overload='default')>,
 <OpOverload(op='aten._upsample_nearest_exact1d', overload='vec')>,
 <OpOverload(op='aten._upsample_nearest_exact2d', overload='default')>,
 <OpOverload(op='aten._upsample_nearest_exact2d', overload='vec')>,
 <OpOverload(op='aten._upsample_nearest_exact3d', overload='default')>,
 <OpOverload(op='aten._upsample_nearest_exact3d', overload='vec')>,
 <OpOverload(op='aten._use_cudnn_rnn_flatten_weight', overload='default')>,
 <OpOverload(op='aten._validate_sparse_bsc_tensor_args', overload='default')>,
 <OpOverload(op='aten._validate_sparse_bsr_tensor_args', overload='default')>,
 <OpOverload(op='aten._validate_sparse_compressed_tensor_args', overload='default')>,
 <OpOverload(op='aten._validate_sparse_coo_tensor_args', overload='default')>,
 <OpOverload(op='aten._validate_sparse_csc_tensor_args', overload='default')>,
 <OpOverload(op='aten._validate_sparse_csr_tensor_args', overload='default')>,
 <OpOverload(op='aten._version', overload='default')>,
 <OpOverload(op='aten._weight_norm', overload='default')>,
 <OpOverload(op='aten._weight_norm_differentiable_backward', overload='default')>,
 <OpOverload(op='aten.absolute', overload='default')>,
 <OpOverload(op='aten.adaptive_avg_pool1d', overload='default')>,
 <OpOverload(op='aten.adaptive_avg_pool2d', overload='default')>,
 <OpOverload(op='aten.adaptive_avg_pool3d', overload='default')>,
 <OpOverload(op='aten.adaptive_max_pool1d', overload='default')>,
 <OpOverload(op='aten.affine_grid_generator_backward', overload='default')>,
 <OpOverload(op='aten.align_as', overload='default')>,
 <OpOverload(op='aten.align_tensors', overload='default')>,
 <OpOverload(op='aten.all', overload='dimname')>,
 <OpOverload(op='aten.any', overload='dimname')>,
 <OpOverload(op='aten.arccos', overload='default')>,
 <OpOverload(op='aten.arccosh', overload='default')>,
 <OpOverload(op='aten.arcsin', overload='default')>,
 <OpOverload(op='aten.arcsinh', overload='default')>,
 <OpOverload(op='aten.arctan', overload='default')>,
 <OpOverload(op='aten.arctan2', overload='default')>,
 <OpOverload(op='aten.arctanh', overload='default')>,
 <OpOverload(op='aten.argsort', overload='default')>,
 <OpOverload(op='aten.argsort', overload='dimname')>,
 <OpOverload(op='aten.argsort', overload='stable')>,
 <OpOverload(op='aten.argwhere', overload='default')>,
 <OpOverload(op='aten.atleast_1d', overload='Sequence')>,
 <OpOverload(op='aten.atleast_2d', overload='Sequence')>,
 <OpOverload(op='aten.atleast_3d', overload='Sequence')>,
 <OpOverload(op='aten.avg_pool1d', overload='default')>,
 <OpOverload(op='aten.bilinear', overload='default')>,
 <OpOverload(op='aten.broadcast_tensors', overload='default')>,
 <OpOverload(op='aten.can_cast', overload='default')>,
 <OpOverload(op='aten.cat', overload='names')>,
 <OpOverload(op='aten.cdist', overload='default')>,
 <OpOverload(op='aten.chain_matmul', overload='default')>,
 <OpOverload(op='aten.chalf', overload='default')>,
 <OpOverload(op='aten.choose_qparams_optimized', overload='default')>,
 <OpOverload(op='aten.clip', overload='Tensor')>,
 <OpOverload(op='aten.clip', overload='default')>,
 <OpOverload(op='aten.column_stack', overload='default')>,
 <OpOverload(op='aten.combinations', overload='default')>,
 <OpOverload(op='aten.concat', overload='default')>,
 <OpOverload(op='aten.concat', overload='names')>,
 <OpOverload(op='aten.concatenate', overload='default')>,
 <OpOverload(op='aten.concatenate', overload='names')>,
 <OpOverload(op='aten.conv1d', overload='default')>,
 <OpOverload(op='aten.conv1d', overload='padding')>,
 <OpOverload(op='aten.conv2d', overload='default')>,
 <OpOverload(op='aten.conv2d', overload='padding')>,
 <OpOverload(op='aten.conv3d', overload='default')>,
 <OpOverload(op='aten.conv3d', overload='padding')>,
 <OpOverload(op='aten.conv_tbc_backward', overload='default')>,
 <OpOverload(op='aten.conv_transpose1d', overload='default')>,
 <OpOverload(op='aten.conv_transpose2d', overload='input')>,
 <OpOverload(op='aten.conv_transpose3d', overload='input')>,
 <OpOverload(op='aten.corrcoef', overload='default')>,
 <OpOverload(op='aten.cosine_embedding_loss', overload='default')>,
 <OpOverload(op='aten.cosine_similarity', overload='default')>,
 <OpOverload(op='aten.cov', overload='default')>,
 <OpOverload(op='aten.cross', overload='default')>,
 <OpOverload(op='aten.cross_entropy_loss', overload='default')>,
 <OpOverload(op='aten.ctc_loss', overload='IntList')>,
 <OpOverload(op='aten.ctc_loss', overload='Tensor')>,
 <OpOverload(op='aten.cudnn_is_acceptable', overload='default')>,
 <OpOverload(op='aten.cummax', overload='dimname')>,
 <OpOverload(op='aten.cummaxmin_backward', overload='default')>,
 <OpOverload(op='aten.cummin', overload='dimname')>,
 <OpOverload(op='aten.cumprod', overload='dimname')>,
 <OpOverload(op='aten.cumprod_backward', overload='default')>,
 <OpOverload(op='aten.cumsum', overload='dimname')>,
 <OpOverload(op='aten.cumulative_trapezoid', overload='dx')>,
 <OpOverload(op='aten.cumulative_trapezoid', overload='x')>,
 <OpOverload(op='aten.data', overload='default')>,
 <OpOverload(op='aten.det', overload='default')>,
 <OpOverload(op='aten.diag', overload='default')>,
 <OpOverload(op='aten.diagflat', overload='default')>,
 <OpOverload(op='aten.diff', overload='default')>,
 <OpOverload(op='aten.divide', overload='Scalar')>,
 <OpOverload(op='aten.divide', overload='Scalar_mode')>,
 <OpOverload(op='aten.divide', overload='Tensor')>,
 <OpOverload(op='aten.divide', overload='Tensor_mode')>,
 <OpOverload(op='aten.dstack', overload='default')>,
 <OpOverload(op='aten.einsum', overload='default')>,
 <OpOverload(op='aten.embedding_backward', overload='default')>,
 <OpOverload(op='aten.embedding_bag', overload='default')>,
 <OpOverload(op='aten.embedding_bag', overload='padding_idx')>,
 <OpOverload(op='aten.embedding_sparse_backward', overload='default')>,
 <OpOverload(op='aten.fake_quantize_per_channel_affine', overload='default')>,
 <OpOverload(op='aten.fake_quantize_per_channel_affine_cachemask_backward', overload='default')>,
 <OpOverload(op='aten.fake_quantize_per_tensor_affine', overload='default')>,
 <OpOverload(op='aten.fake_quantize_per_tensor_affine', overload='tensor_qparams')>,
 <OpOverload(op='aten.fake_quantize_per_tensor_affine_cachemask_backward', overload='default')>,
 <OpOverload(op='aten.fbgemm_linear_fp16_weight', overload='default')>,
 <OpOverload(op='aten.fbgemm_linear_fp16_weight_fp32_activation', overload='default')>,
 <OpOverload(op='aten.fbgemm_linear_int8_weight', overload='default')>,
 <OpOverload(op='aten.fbgemm_linear_int8_weight_fp32_activation', overload='default')>,
 <OpOverload(op='aten.fbgemm_linear_quantize_weight', overload='default')>,
 <OpOverload(op='aten.fbgemm_pack_gemm_matrix_fp16', overload='default')>,
 <OpOverload(op='aten.fbgemm_pack_quantized_matrix', overload='KN')>,
 <OpOverload(op='aten.fbgemm_pack_quantized_matrix', overload='default')>,
 <OpOverload(op='aten.fft_fft', overload='default')>,
 <OpOverload(op='aten.fft_fft2', overload='default')>,
 <OpOverload(op='aten.fft_fftn', overload='default')>,
 <OpOverload(op='aten.fft_fftshift', overload='default')>,
 <OpOverload(op='aten.fft_hfft', overload='default')>,
 <OpOverload(op='aten.fft_hfft2', overload='default')>,
 <OpOverload(op='aten.fft_hfftn', overload='default')>,
 <OpOverload(op='aten.fft_ifft', overload='default')>,
 <OpOverload(op='aten.fft_ifft2', overload='default')>,
 <OpOverload(op='aten.fft_ifftn', overload='default')>,
 <OpOverload(op='aten.fft_ifftshift', overload='default')>,
 <OpOverload(op='aten.fft_ihfft', overload='default')>,
 <OpOverload(op='aten.fft_ihfft2', overload='default')>,
 <OpOverload(op='aten.fft_ihfftn', overload='default')>,
 <OpOverload(op='aten.fft_irfft', overload='default')>,
 <OpOverload(op='aten.fft_irfft2', overload='default')>,
 <OpOverload(op='aten.fft_irfftn', overload='default')>,
 <OpOverload(op='aten.fft_rfft', overload='default')>,
 <OpOverload(op='aten.fft_rfft2', overload='default')>,
 <OpOverload(op='aten.fft_rfftn', overload='default')>,
 <OpOverload(op='aten.fix', overload='default')>,
 <OpOverload(op='aten.flatten_dense_tensors', overload='default')>,
 <OpOverload(op='aten.fliplr', overload='default')>,
 <OpOverload(op='aten.flipud', overload='default')>,
 <OpOverload(op='aten.float_power', overload='Scalar')>,
 <OpOverload(op='aten.float_power', overload='Tensor_Scalar')>,
 <OpOverload(op='aten.float_power', overload='Tensor_Tensor')>,
 <OpOverload(op='aten.frobenius_norm', overload='dim')>,
 <OpOverload(op='aten.gather', overload='dimname')>,
 <OpOverload(op='aten.gather_backward', overload='default')>,
 <OpOverload(op='aten.ger', overload='default')>,
 <OpOverload(op='aten.gradient', overload='array')>,
 <OpOverload(op='aten.gradient', overload='scalararray')>,
 <OpOverload(op='aten.gradient', overload='scalarint')>,
 <OpOverload(op='aten.gradient', overload='scalarrayarray')>,
 <OpOverload(op='aten.gradient', overload='scalarrayint')>,
 <OpOverload(op='aten.gradient', overload='tensorarray')>,
 <OpOverload(op='aten.gradient', overload='tensorarrayint')>,
 <OpOverload(op='aten.greater', overload='Scalar')>,
 <OpOverload(op='aten.greater', overload='Tensor')>,
 <OpOverload(op='aten.greater_equal', overload='Scalar')>,
 <OpOverload(op='aten.greater_equal', overload='Tensor')>,
 <OpOverload(op='aten.grid_sampler', overload='default')>,
 <OpOverload(op='aten.group_norm', overload='default')>,
 <OpOverload(op='aten.gru', overload='data')>,
 <OpOverload(op='aten.gru', overload='input')>,
 <OpOverload(op='aten.gru_cell', overload='default')>,
 <OpOverload(op='aten.hinge_embedding_loss', overload='default')>,
 <OpOverload(op='aten.histogramdd', overload='TensorList_bins')>,
 <OpOverload(op='aten.histogramdd', overload='default')>,
 <OpOverload(op='aten.histogramdd', overload='int_bins')>,
 <OpOverload(op='aten.hstack', overload='default')>,
 <OpOverload(op='aten.index_add', overload='dimname')>,
 <OpOverload(op='aten.index_copy', overload='dimname')>,
 <OpOverload(op='aten.index_fill', overload='Dimname_Scalar')>,
 <OpOverload(op='aten.index_fill', overload='Dimname_Tensor')>,
 <OpOverload(op='aten.index_select', overload='dimname')>,
 <OpOverload(op='aten.index_select_backward', overload='default')>,
 <OpOverload(op='aten.infinitely_differentiable_gelu_backward', overload='default')>,
 <OpOverload(op='aten.inner', overload='default')>,
 <OpOverload(op='aten.instance_norm', overload='default')>,
 <OpOverload(op='aten.inverse', overload='default')>,
 <OpOverload(op='aten.is_complex', overload='default')>,
 <OpOverload(op='aten.is_conj', overload='default')>,
 <OpOverload(op='aten.is_distributed', overload='default')>,
 <OpOverload(op='aten.is_floating_point', overload='default')>,
 <OpOverload(op='aten.is_inference', overload='default')>,
 <OpOverload(op='aten.is_leaf', overload='default')>,
 <OpOverload(op='aten.is_neg', overload='default')>,
 <OpOverload(op='aten.is_nonzero', overload='default')>,
 <OpOverload(op='aten.is_signed', overload='default')>,
 <OpOverload(op='aten.is_vulkan_available', overload='default')>,
 <OpOverload(op='aten.isclose', overload='default')>,
 <OpOverload(op='aten.isfinite', overload='default')>,
 <OpOverload(op='aten.isreal', overload='default')>,
 <OpOverload(op='aten.istft', overload='default')>,
 <OpOverload(op='aten.item', overload='default')>,
 <OpOverload(op='aten.kl_div', overload='default')>,
 <OpOverload(op='aten.kron', overload='default')>,
 <OpOverload(op='aten.kthvalue', overload='dimname')>,
 <OpOverload(op='aten.l1_loss', overload='default')>,
 <OpOverload(op='aten.layer_norm', overload='default')>,
 <OpOverload(op='aten.ldexp', overload='Tensor')>,
 <OpOverload(op='aten.less', overload='Scalar')>,
 <OpOverload(op='aten.less', overload='Tensor')>,
 <OpOverload(op='aten.less_equal', overload='Scalar')>,
 <OpOverload(op='aten.less_equal', overload='Tensor')>,
 <OpOverload(op='aten.linalg_cholesky', overload='default')>,
 <OpOverload(op='aten.linalg_cond', overload='default')>,
 <OpOverload(op='aten.linalg_cond', overload='p_str')>,
 <OpOverload(op='aten.linalg_det', overload='default')>,
 <OpOverload(op='aten.linalg_eigh', overload='default')>,
 <OpOverload(op='aten.linalg_eigvals', overload='default')>,
 <OpOverload(op='aten.linalg_eigvalsh', overload='default')>,
 <OpOverload(op='aten.linalg_inv', overload='default')>,
 <OpOverload(op='aten.linalg_ldl_factor', overload='default')>,
 <OpOverload(op='aten.linalg_lu_factor', overload='default')>,
 <OpOverload(op='aten.linalg_matmul', overload='default')>,
 <OpOverload(op='aten.linalg_matrix_norm', overload='default')>,
 <OpOverload(op='aten.linalg_matrix_norm', overload='str_ord')>,
 <OpOverload(op='aten.linalg_matrix_power', overload='default')>,
 <OpOverload(op='aten.linalg_matrix_rank', overload='atol_rtol_float')>,
 <OpOverload(op='aten.linalg_matrix_rank', overload='atol_rtol_tensor')>,
 <OpOverload(op='aten.linalg_matrix_rank', overload='default')>,
 <OpOverload(op='aten.linalg_matrix_rank', overload='tol_tensor')>,
 <OpOverload(op='aten.linalg_multi_dot', overload='default')>,
 <OpOverload(op='aten.linalg_norm', overload='default')>,
 <OpOverload(op='aten.linalg_norm', overload='ord_str')>,
 <OpOverload(op='aten.linalg_pinv', overload='atol_rtol_float')>,
 <OpOverload(op='aten.linalg_pinv', overload='default')>,
 <OpOverload(op='aten.linalg_pinv', overload='rcond_tensor')>,
 <OpOverload(op='aten.linalg_slogdet', overload='default')>,
 <OpOverload(op='aten.linalg_solve', overload='default')>,
 <OpOverload(op='aten.linalg_solve_ex', overload='default')>,
 <OpOverload(op='aten.linalg_svd', overload='default')>,
 <OpOverload(op='aten.linalg_svdvals', overload='default')>,
 <OpOverload(op='aten.linalg_tensorinv', overload='default')>,
 <OpOverload(op='aten.linalg_tensorsolve', overload='default')>,
 <OpOverload(op='aten.linalg_vander', overload='default')>,
 <OpOverload(op='aten.linalg_vecdot', overload='default')>,
 <OpOverload(op='aten.linear', overload='default')>,
 <OpOverload(op='aten.log_sigmoid', overload='default')>,
 <OpOverload(op='aten.log_softmax', overload='Dimname')>,
 <OpOverload(op='aten.log_softmax', overload='int')>,
 <OpOverload(op='aten.logcumsumexp', overload='dimname')>,
 <OpOverload(op='aten.logdet', overload='default')>,
 <OpOverload(op='aten.logsumexp', overload='names')>,
 <OpOverload(op='aten.lstm', overload='data')>,
 <OpOverload(op='aten.lstm', overload='input')>,
 <OpOverload(op='aten.lstm_cell', overload='default')>,
 <OpOverload(op='aten.lu_solve', overload='default')>,
 <OpOverload(op='aten.margin_ranking_loss', overload='default')>,
 <OpOverload(op='aten.masked_select_backward', overload='default')>,
 <OpOverload(op='aten.matmul', overload='default')>,
 <OpOverload(op='aten.matrix_exp', overload='default')>,
 <OpOverload(op='aten.matrix_exp_backward', overload='default')>,
 <OpOverload(op='aten.matrix_power', overload='default')>,
 <OpOverload(op='aten.max', overload='names_dim')>,
 <OpOverload(op='aten.max', overload='other')>,
 <OpOverload(op='aten.max_pool1d', overload='default')>,
 <OpOverload(op='aten.max_pool1d_with_indices', overload='default')>,
 <OpOverload(op='aten.max_pool2d', overload='default')>,
 <OpOverload(op='aten.max_pool3d', overload='default')>,
 <OpOverload(op='aten.mean', overload='names_dim')>,
 <OpOverload(op='aten.median', overload='names_dim')>,
 <OpOverload(op='aten.meshgrid', overload='default')>,
 <OpOverload(op='aten.meshgrid', overload='indexing')>,
 <OpOverload(op='aten.min', overload='names_dim')>,
 <OpOverload(op='aten.min', overload='other')>,
 <OpOverload(op='aten.mish_backward', overload='default')>,
 <OpOverload(op='aten.mode', overload='dimname')>,
 <OpOverload(op='aten.msort', overload='default')>,
 <OpOverload(op='aten.multilabel_margin_loss', overload='default')>,
 <OpOverload(op='aten.multiply', overload='Scalar')>,
 <OpOverload(op='aten.multiply', overload='Tensor')>,
 <OpOverload(op='aten.nanmean', overload='default')>,
 <OpOverload(op='aten.nanmedian', overload='names_dim')>,
 <OpOverload(op='aten.nanquantile', overload='default')>,
 <OpOverload(op='aten.nanquantile', overload='scalar')>,
 <OpOverload(op='aten.native_channel_shuffle', overload='default')>,
 <OpOverload(op='aten.negative', overload='default')>,
 <OpOverload(op='aten.nested_to_padded_tensor', overload='default')>,
 <OpOverload(op='aten.nll_loss', overload='default')>,
 <OpOverload(op='aten.nll_loss2d', overload='default')>,
 <OpOverload(op='aten.nll_loss_nd', overload='default')>,
 <OpOverload(op='aten.nonzero_numpy', overload='default')>,
 <OpOverload(op='aten.norm', overload='names_ScalarOpt_dim')>,
 <OpOverload(op='aten.norm', overload='names_ScalarOpt_dim_dtype')>,
 <OpOverload(op='aten.norm_except_dim', overload='default')>,
 <OpOverload(op='aten.not_equal', overload='Scalar')>,
 <OpOverload(op='aten.not_equal', overload='Tensor')>,
 <OpOverload(op='aten.nuclear_norm', overload='default')>,
 <OpOverload(op='aten.nuclear_norm', overload='dim')>,
 <OpOverload(op='aten.one_hot', overload='default')>,
 <OpOverload(op='aten.orgqr', overload='default')>,
 <OpOverload(op='aten.outer', overload='default')>,
 <OpOverload(op='aten.output_nr', overload='default')>,
 <OpOverload(op='aten.pad', overload='default')>,
 <OpOverload(op='aten.pad_sequence', overload='default')>,
 <OpOverload(op='aten.pairwise_distance', overload='default')>,
 <OpOverload(op='aten.pdist', overload='default')>,
 <OpOverload(op='aten.pinverse', overload='default')>,
 <OpOverload(op='aten.poisson_nll_loss', overload='default')>,
 <OpOverload(op='aten.prelu', overload='default')>,
 <OpOverload(op='aten.prod', overload='dim_Dimname')>,
 <OpOverload(op='aten.promote_types', overload='default')>,
 <OpOverload(op='aten.qr', overload='default')>,
 <OpOverload(op='aten.quantile', overload='default')>,
 <OpOverload(op='aten.quantile', overload='scalar')>,
 <OpOverload(op='aten.quantized_gru_cell', overload='default')>,
 <OpOverload(op='aten.quantized_lstm_cell', overload='default')>,
 <OpOverload(op='aten.quantized_rnn_relu_cell', overload='default')>,
 <OpOverload(op='aten.quantized_rnn_tanh_cell', overload='default')>,
 <OpOverload(op='aten.relu6', overload='default')>,
 <OpOverload(op='aten.repeat_interleave', overload='self_Tensor')>,
 <OpOverload(op='aten.repeat_interleave', overload='self_int')>,
 <OpOverload(op='aten.result_type', overload='Scalar')>,
 <OpOverload(op='aten.result_type', overload='Scalar_Scalar')>,
 <OpOverload(op='aten.result_type', overload='Scalar_Tensor')>,
 <OpOverload(op='aten.result_type', overload='Tensor')>,
 <OpOverload(op='aten.retains_grad', overload='default')>,
 <OpOverload(op='aten.rms_norm', overload='default')>,
 <OpOverload(op='aten.rnn_relu', overload='data')>,
 <OpOverload(op='aten.rnn_relu', overload='input')>,
 <OpOverload(op='aten.rnn_relu_cell', overload='default')>,
 <OpOverload(op='aten.rnn_tanh', overload='data')>,
 <OpOverload(op='aten.rnn_tanh', overload='input')>,
 <OpOverload(op='aten.rnn_tanh_cell', overload='default')>,
 <OpOverload(op='aten.row_stack', overload='default')>,
 <OpOverload(op='aten.rrelu', overload='default')>,
 <OpOverload(op='aten.scaled_dot_product_attention', overload='default')>,
 <OpOverload(op='aten.scatter', overload='dimname_src')>,
 <OpOverload(op='aten.scatter', overload='dimname_value')>,
 <OpOverload(op='aten.scatter_add', overload='dimname')>,
 <OpOverload(op='aten.selu', overload='default')>,
 <OpOverload(op='aten.silu_backward', overload='default')>,
 <OpOverload(op='aten.size', overload='Dimname')>,
 <OpOverload(op='aten.size', overload='int')>,
 <OpOverload(op='aten.slogdet', overload='default')>,
 <OpOverload(op='aten.slow_conv3d', overload='default')>,
 <OpOverload(op='aten.smm', overload='default')>,
 <OpOverload(op='aten.softmax', overload='Dimname')>,
 <OpOverload(op='aten.softmax', overload='int')>,
 <OpOverload(op='aten.sort', overload='dimname')>,
 <OpOverload(op='aten.sort', overload='dimname_stable')>,
 <OpOverload(op='aten.sparse_bsc_tensor', overload='ccol_row_value')>,
 <OpOverload(op='aten.sparse_bsc_tensor', overload='ccol_row_value_size')>,
 <OpOverload(op='aten.sparse_bsr_tensor', overload='crow_col_value')>,
 <OpOverload(op='aten.sparse_bsr_tensor', overload='crow_col_value_size')>,
 <OpOverload(op='aten.sparse_coo_tensor', overload='indices')>,
 <OpOverload(op='aten.sparse_coo_tensor', overload='indices_size')>,
 <OpOverload(op='aten.sparse_csc_tensor', overload='ccol_row_value')>,
 <OpOverload(op='aten.sparse_csc_tensor', overload='ccol_row_value_size')>,
 <OpOverload(op='aten.sparse_csr_tensor', overload='crow_col_value')>,
 <OpOverload(op='aten.sparse_csr_tensor', overload='crow_col_value_size')>,
 <OpOverload(op='aten.special_digamma', overload='default')>,
 <OpOverload(op='aten.special_erf', overload='default')>,
 <OpOverload(op='aten.special_erfc', overload='default')>,
 <OpOverload(op='aten.special_erfinv', overload='default')>,
 <OpOverload(op='aten.special_exp2', overload='default')>,
 <OpOverload(op='aten.special_expit', overload='default')>,
 <OpOverload(op='aten.special_expm1', overload='default')>,
 <OpOverload(op='aten.special_gammainc', overload='default')>,
 <OpOverload(op='aten.special_gammaincc', overload='default')>,
 <OpOverload(op='aten.special_gammaln', overload='default')>,
 <OpOverload(op='aten.special_i0', overload='default')>,
 <OpOverload(op='aten.special_log1p', overload='default')>,
 <OpOverload(op='aten.special_log_softmax', overload='default')>,
 <OpOverload(op='aten.special_logit', overload='default')>,
 <OpOverload(op='aten.special_logsumexp', overload='default')>,
 <OpOverload(op='aten.special_multigammaln', overload='default')>,
 <OpOverload(op='aten.special_ndtr', overload='default')>,
 <OpOverload(op='aten.special_polygamma', overload='default')>,
 <OpOverload(op='aten.special_psi', overload='default')>,
 <OpOverload(op='aten.special_round', overload='default')>,
 <OpOverload(op='aten.special_sinc', overload='default')>,
 <OpOverload(op='aten.special_softmax', overload='default')>,
 <OpOverload(op='aten.special_xlogy', overload='default')>,
 <OpOverload(op='aten.special_xlogy', overload='other_scalar')>,
 <OpOverload(op='aten.special_xlogy', overload='self_scalar')>,
 <OpOverload(op='aten.square', overload='default')>,
 <OpOverload(op='aten.sspaddmm', overload='default')>,
 <OpOverload(op='aten.std', overload='correction_names')>,
 <OpOverload(op='aten.std', overload='default')>,
 <OpOverload(op='aten.std', overload='dim')>,
 <OpOverload(op='aten.std', overload='names_dim')>,
 <OpOverload(op='aten.std_mean', overload='correction_names')>,
 <OpOverload(op='aten.std_mean', overload='default')>,
 <OpOverload(op='aten.std_mean', overload='dim')>,
 <OpOverload(op='aten.std_mean', overload='names_dim')>,
 <OpOverload(op='aten.stft', overload='center')>,
 <OpOverload(op='aten.stft', overload='default')>,
 <OpOverload(op='aten.stride', overload='Dimname')>,
 <OpOverload(op='aten.stride', overload='int')>,
 <OpOverload(op='aten.subtract', overload='Scalar')>,
 <OpOverload(op='aten.subtract', overload='Tensor')>,
 <OpOverload(op='aten.sum', overload='dim_DimnameList')>,
 <OpOverload(op='aten.sum_to_size', overload='default')>,
 <OpOverload(op='aten.svd', overload='default')>,
 <OpOverload(op='aten.sym_size', overload='int')>,
 <OpOverload(op='aten.sym_stride', overload='int')>,
 <OpOverload(op='aten.take_along_dim', overload='default')>,
 <OpOverload(op='aten.tensordot', overload='default')>,
 <OpOverload(op='aten.thnn_conv2d', overload='default')>,
 <OpOverload(op='aten.tile', overload='default')>,
 <OpOverload(op='aten.to_dense', overload='default')>,
 <OpOverload(op='aten.to_dense_backward', overload='default')>,
 <OpOverload(op='aten.to_mkldnn_backward', overload='default')>,
 <OpOverload(op='aten.to_sparse', overload='default')>,
 <OpOverload(op='aten.to_sparse', overload='sparse_dim')>,
 <OpOverload(op='aten.to_sparse_bsc', overload='default')>,
 <OpOverload(op='aten.to_sparse_bsr', overload='default')>,
 <OpOverload(op='aten.to_sparse_csc', overload='default')>,
 <OpOverload(op='aten.to_sparse_csr', overload='default')>,
 <OpOverload(op='aten.trace_backward', overload='default')>,
 <OpOverload(op='aten.trapezoid', overload='dx')>,
 <OpOverload(op='aten.trapezoid', overload='x')>,
 <OpOverload(op='aten.trapz', overload='dx')>,
 <OpOverload(op='aten.trapz', overload='x')>,
 <OpOverload(op='aten.triplet_margin_loss', overload='default')>,
 <OpOverload(op='aten.true_divide', overload='Scalar')>,
 <OpOverload(op='aten.true_divide', overload='Tensor')>,
 <OpOverload(op='aten.type_as', overload='default')>,
 <OpOverload(op='aten.unflatten_dense_tensors', overload='default')>,
 <OpOverload(op='aten.upsample_bicubic2d', overload='vec')>,
 <OpOverload(op='aten.upsample_bilinear2d', overload='vec')>,
 <OpOverload(op='aten.upsample_linear1d', overload='vec')>,
 <OpOverload(op='aten.upsample_nearest1d', overload='default')>,
 <OpOverload(op='aten.upsample_nearest1d', overload='vec')>,
 <OpOverload(op='aten.upsample_nearest2d', overload='default')>,
 <OpOverload(op='aten.upsample_nearest2d', overload='vec')>,
 <OpOverload(op='aten.upsample_nearest3d', overload='default')>,
 <OpOverload(op='aten.upsample_nearest3d', overload='vec')>,
 <OpOverload(op='aten.upsample_trilinear3d', overload='vec')>,
 <OpOverload(op='aten.value_selecting_reduction_backward', overload='default')>,
 <OpOverload(op='aten.vander', overload='default')>,
 <OpOverload(op='aten.var', overload='correction_names')>,
 <OpOverload(op='aten.var', overload='default')>,
 <OpOverload(op='aten.var', overload='dim')>,
 <OpOverload(op='aten.var', overload='names_dim')>,
 <OpOverload(op='aten.var_mean', overload='correction_names')>,
 <OpOverload(op='aten.var_mean', overload='default')>,
 <OpOverload(op='aten.var_mean', overload='dim')>,
 <OpOverload(op='aten.var_mean', overload='names_dim')>,
 <OpOverload(op='aten.vstack', overload='default')>,
 <OpOverload(op='aten.where', overload='Scalar')>,
 <OpOverload(op='aten.where', overload='ScalarOther')>,
 <OpOverload(op='aten.where', overload='ScalarSelf')>,
 <OpOverload(op='aten.where', overload='default')>,
 <OpOverload(op='aten.wrapped_linear_prepack', overload='default')>,
 <OpOverload(op='aten.wrapped_quantized_linear_prepacked', overload='default')>
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136153
Approved by: https://github.com/xadupre, https://github.com/gramalingam
2024-09-16 21:28:54 +00:00
Justin Chu
0aa41eb52f [ONNX] Run type promotion test in CI and update the table (#135915)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135915
Approved by: https://github.com/gramalingam, https://github.com/xadupre
2024-09-16 16:46:13 +00:00
Tugsbayasgalan Manlaibaatar
382fad58b3 Deprecate _preserve_ops and consolidate with decomp_table (#135080)
In this PR, we deprecate _preserve_ops feature in run_decomposition API. We can't kill this API completely because Executorch team depends on it. As the syncing between two repos is non-trivial, I just leave this argument as deprecated for now. In the next PR, i will immediately remove it.

After this PR, run_decompositions will only decompose what's inside the decomp table and preserve the rest by default. Note that this feature is only rolled out to OSS for now. Old code path is protected under IS_FBCODE flag.

Differential Revision: [D62163161](https://our.internmc.facebook.com/intern/diff/D62163161/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135080
Approved by: https://github.com/justinchuby, https://github.com/avikchaudhuri, https://github.com/bdhirsh
2024-09-15 17:01:58 +00:00
Justin Chu
e2d3af405f [ONNX] Remove logging apis from public (#133825)
Remove

- torch.onnx.enable_log
- torch.onnx.disable_log
- torch.onnx.set_log_stream
- torch.onnx.log

Because they are not meant for public consumption and has been marked for deprecation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133825
Approved by: https://github.com/titaiwangms
2024-09-13 22:19:52 +00:00
Justin Chu
d67cc58181 [ONNX] Fix symbolic values and numpy implementation (#135786)
1. Remove `__eq__` to make `SymbolicTensor` hashable and test for that
2. Update the `__array__` method so that it works for tensor on GPU

Fixes https://github.com/pytorch/pytorch/issues/135700
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135786
Approved by: https://github.com/titaiwangms
2024-09-12 14:24:43 +00:00
Shubham Bhokare
66db61f0d1 [ONNX] Update fake mode usage in onnx docs (#135512)
Update fake mode usage in onnx docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135512
Approved by: https://github.com/justinchuby

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2024-09-11 21:29:04 +00:00
titaiwangms
492f064f15 [ONNX] Add assertion nodes to ignoring list (#135591)
Fixes #135419

PS: there are 104 empty output nodes, I suggest we add them one by one when we run into them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135591
Approved by: https://github.com/justinchuby
2024-09-11 00:18:17 +00:00