Commit Graph

24 Commits

Author SHA1 Message Date
Justin Chu
524b78d4f6 [ONNX] Refactor torchscript based exporter (#161323)
Refactor torchscript based exporter logic to move them to a single (private) location for better code management. Original public module and method apis are preserved.

- Updated module paths in `torch/csrc/autograd/python_function.cpp` accordingly
- Removed `check_onnx_broadcast` from `torch/autograd/_functions/utils.py` because it is private&unused

@albanD / @soulitzer could you review changes in `torch/csrc/autograd/python_function.cpp` and
`torch/autograd/_functions/utils.py`? Thanks!

## BC Breaking
- **Deprecated members in `torch.onnx.verification` are removed**

Differential Revision: [D81236421](https://our.internmc.facebook.com/intern/diff/D81236421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161323
Approved by: https://github.com/titaiwangms, https://github.com/angelayi
2025-09-02 16:10:30 +00:00
Jack Zhang
ed309b9156 Re-add stft option to align window for center = false (#146379)
Skips advancing the fc window on https://github.com/pytorch/pytorch/pull/145437, since I just found that there were non-trivial efforts to do so a while ago that eventually was reverted: https://github.com/pytorch/pytorch/pull/73434

Works around the issue by keeping the stft sans center overload

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146379
Approved by: https://github.com/justinchuby, https://github.com/iseeyuan
2025-02-06 14:07:13 +00:00
PyTorch MergeBot
4280232f21 Revert "Advance past fc window for stft center (#145437)"
This reverts commit 3ef1551f5a.

Reverted https://github.com/pytorch/pytorch/pull/145437 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks some slow trunk tests ([comment](https://github.com/pytorch/pytorch/pull/145437#issuecomment-2625840742))
2025-01-30 23:14:16 +00:00
Jack Zhang
3ef1551f5a Advance past fc window for stft center (#145437)
Long overdue follow-up on https://github.com/pytorch/pytorch/pull/73432/files#diff-5f3d4caa0693a716fc46fd7f6339312f1b5f0bf89e3a3ff58e9dc13a9486b17aR719

Onnx stft doesn't support centering, [and all of the existing tests are for center = False](https://github.com/pytorch/pytorch/blob/main/test/onnx/test_pytorch_onnx_onnxruntime.py#L8026). I will open a follow-up issue to address this, this is just a nice-to-have.

Pr chain:
- -> [Advance past fc window for stft center #145437](https://github.com/pytorch/pytorch/pull/145437)
- [Add stft option to align window for center = false #145324](https://github.com/pytorch/pytorch/pull/145324)
- [Add istft option to align window for center = false](https://github.com/pytorch/pytorch/pull/145510)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145437
Approved by: https://github.com/justinchuby, https://github.com/iseeyuan
2025-01-30 19:09:18 +00:00
Aaron Orenstein
2b809e58ad PEP585 update - torch/onnx (#145174)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145174
Approved by: https://github.com/justinchuby
2025-01-20 05:48:52 +00:00
Xuehai Pan
30293319a8 [BE][Easy][19/19] enforce style for empty lines in import segments in torch/[o-z]*/ (#129771)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129771
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2024-08-01 17:07:14 +00:00
Aaron Orenstein
abcd329359 [BE] typing for decorators - onnx/symbolic_helper (#131565)
See #131429
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131565
Approved by: https://github.com/justinchuby, https://github.com/oulgen, https://github.com/zou3519, https://github.com/titaiwangms
2024-07-24 16:39:47 +00:00
Aaron Orenstein
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
Justin Chu
e880cb2fe0 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-18 22:07:40 +00:00
PyTorch MergeBot
0851de5b16 Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit 1794c35912.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/clee2000 due to test_sympy_utils failure is real https://github.com/pytorch/pytorch/actions/runs/9961499559/job/27523758780 1794c35912.  Dr CI is matching with commits in current commit? ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2231575577))
2024-07-16 18:41:51 +00:00
Justin Chu
1794c35912 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-16 17:34:36 +00:00
PyTorch MergeBot
0effcb70ef Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit f44739cf42.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/huydhn due to Sorry for reverting your change but those failures show up in trunk after the commit landed f44739cf42, I am reverting it to see if it fix trunk ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2226812311))
2024-07-13 07:52:59 +00:00
Justin Chu
f44739cf42 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-13 00:08:25 +00:00
Aaron Orenstein
27f9d3b0a1 Flip default value for mypy disallow_untyped_defs [8/11] (#127845)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127845
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843, #127844
2024-06-08 18:49:56 +00:00
titaiwangms
4fd777ed59 [ONNX] Add quantized layer norm op to opset 17 (#127640)
Fixes #126160
Continue #126555

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127640
Approved by: https://github.com/justinchuby
2024-06-02 02:10:02 +00:00
CYuxian
b88abb1674 [ONNX] Fix export issue of aten::layer_norm in opset 17 (#114058)
For torch.nn.LayerNorm, weight and bias could be None(when parameter elementwise_affine is False or bias is False), but for onnx op LayerNormalization from opset 17, weight and bias cannot be None.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114058
Approved by: https://github.com/thiagocrepaldi
2023-11-21 22:45:50 +00:00
Justin Chu
242a7743f3 [BE] Enable ruff's UP rules and autoformat onnx/ (#105427)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105427
Approved by: https://github.com/malfet
2023-07-18 21:41:24 +00:00
Oriol Nieto
5f89d147a1 [ONNX] STFT Support (#92087)
This PR addresses issue [#81075](https://github.com/pytorch/pytorch/issues/81075),  making `torch.stft` compatible with ONNX Opset 17's STFT operator.

The conversion works for _most_ of `torch.stft` functionality:

- Batched or unbatched inputs
- Normalization
- Pre-computed windows
- Rectangular windows
- One-sided returns
- Window centering (implicitly supported)

What is currently _not_ supported is **complex types**, due to the lack of conversion functionality between PyTorch and ONNX (https://github.com/pytorch/pytorch/issues/86746).

Regardless, this is easy to bypass by setting `return_complex=False` when using `torch.stft`.

Note that there is already a draft PR to address this (https://github.com/pytorch/pytorch/pull/83944), but it is currently closed and it only partially addresses the conversion (i.e., most of `torch.stft` functionality is lacking, and unit tests are missing).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92087
Approved by: https://github.com/justinchuby
2023-03-10 02:20:58 +00:00
Justin Chu
5deeb09d4e [ONNX] Annotate all g as GraphContext (#85491)
- Use g.opset to test export opset version
- Annotate all `g` as GraphContext

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85491
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-28 22:39:28 +00:00
Justin Chu
2f50d2f685 [ONNX] Update docs on symbolic registration (#85290)
- Move inline instructions on editing symbolic functions to the README
- Add a line on using the symbolic function registration decorator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85290
Approved by: https://github.com/BowenBao
2022-09-22 13:37:11 +00:00
Justin Chu
76d60778eb [ONNX] Use decorators for symbolic function registration (#84448)
This is the 4th PR in the series of #83787. It enables the use of `@onnx_symbolic` across `torch.onnx`.

- **Backward breaking**: Removed some symbolic functions from `__all__` because of the use of  `@onnx_symbolic` for registering the same function on multiple aten names.
- Decorate all symbolic functions with `@onnx_symbolic`
- Move Quantized and Prim ops out from classes to functions defined in the modules. Eliminate the need for `isfunction` checking, speeding up the registration process by 60%.
    - Remove the outdated unit test `test_symbolic_opset9.py`
- Symbolic function registration moved from the first call to `_run_symbolic_function` to init time.
- Registration is fast:
  ![image](https://user-images.githubusercontent.com/11205048/189164959-f3fca173-19bc-4682-b150-f13a586387bf.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84448
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-22 06:25:24 +00:00
Justin Chu
cd7e6d4ad1 [ONNX] New symbolic function registry (#84382)
## Summary

The change brings the new registry for symbolic functions in ONNX. The `SymbolicRegistry` class in `torch.onnx._internal.registration` replaces the dictionary and various functions defined in `torch.onnx.symbolic_registry`.

The new registry

- Has faster lookup by storing only functions in the opset version they are defined in
- Is easier to manage and interact with due to its class design
- Builds the foundation for the more flexible registration process detailed in #83787

Implementation changes

- **Breaking**: Remove `torch.onnx.symbolic_registry`
- `register_custom_op_symbolic` and `unregister_custom_op_symbolic` in utils maintain their api for compatibility
- Update _onnx_supported_ops.py for doc generation to include quantized ops.
- Update code to register python ops in `torch/csrc/jit/passes/onnx.cpp`

## Profiling results

-0.1 seconds in execution time. -34% time spent in `_run_symbolic_function`. Tested on the alexnet example in public doc.

### After
```
   └─ 1.641 export  <@beartype(torch.onnx.utils.export) at 0x7f19be17f790>:1
      └─ 1.641 export  torch/onnx/utils.py:185
         └─ 1.640 _export  torch/onnx/utils.py:1331
            ├─ 0.889 _model_to_graph  torch/onnx/utils.py:1005
            │  ├─ 0.478 _optimize_graph  torch/onnx/utils.py:535
            │  │  ├─ 0.214 PyCapsule._jit_pass_onnx_graph_shape_type_inference  <built-in>:0
            │  │  │     [2 frames hidden]  <built-in>
            │  │  ├─ 0.190 _run_symbolic_function  torch/onnx/utils.py:1670
            │  │  │  └─ 0.145 Constant  torch/onnx/symbolic_opset9.py:5782
            │  │  │     └─ 0.139 _graph_op  torch/onnx/_patch_torch.py:18
            │  │  │        └─ 0.134 PyCapsule._jit_pass_onnx_node_shape_type_inference  <built-in>:0
            │  │  │              [2 frames hidden]  <built-in>
            │  │  └─ 0.033 [self]
```

### Before
![image](https://user-images.githubusercontent.com/11205048/188032302-688d881e-860d-4046-bdba-90da54233576.png)

### Start up time

The startup process takes 0.03 seconds. Calls to `inspect` will be eliminated when we switch to using decorators for registration in #84448

![image](https://user-images.githubusercontent.com/11205048/188208910-250f0434-475d-4872-9abc-781535519305.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84382
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-16 21:45:16 +00:00
titaiwang
7c4c7dafbd [ONNX] Add onnx::LayerNorm support for version 17 (#84293)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84293
Approved by: https://github.com/justinchuby, https://github.com/BowenBao
2022-09-04 02:20:08 +00:00
Justin Chu
05849eafb9 [ONNX] Create empty opset 17 symbolic file (#83287)
The PR

- Creates an empty symbolic file to house the new ops defined in ONNX 17
- Increments the max version to 17 and fixes the doc for version 16
- Enables tests for opset 17
- Updates the IR version in `export.cpp`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83287
Approved by: https://github.com/thiagocrepaldi, https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-08-19 02:02:46 +00:00