Commit Graph

209 Commits

Author SHA1 Message Date
BowenBao
08126c9153 [ONNX] Utilize ONNX shape inference for ONNX exporter (#40628)
Summary:
It is often that the conversion from torch operator to onnx operator requires input rank/dtype/shape to be known. Previously, the conversion depends on tracer to provide these info, leaving a gap in conversion of scripted modules.

We are extending the export with support from onnx shape inference. If enabled, onnx shape inference will be called whenever an onnx node is created. This is the first PR introducing the initial look of the feature. More and more cases will be supported following this PR.

* Added pass to run onnx shape inference on a given node. The node has to have namespace `onnx`.
* Moved helper functions from `export.cpp` to a common place for re-use.
* This feature is currently experimental, and can be turned on through flag `onnx_shape_inference` in internal api `torch.onnx._export`.
* Currently skipping ONNX Sequence ops, If/Loop and ConstantOfShape due to limitations. Support will be added in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40628

Reviewed By: mrshenli

Differential Revision: D22709746

Pulled By: bzinodev

fbshipit-source-id: b52aeeae00667e66e0b0c1144022f7af9a8b2948
2020-08-30 18:35:46 -07:00
neginraoof
cd0bab8d8d [ONNX] Where op (#41544)
Summary:
Extending where op export

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41544

Reviewed By: malfet

Differential Revision: D23279515

Pulled By: bzinodev

fbshipit-source-id: 4627c95ba18c8a5ac8d06839c343e06e71c46aa7
2020-08-28 18:15:01 -07:00
Deepak Velmurugan
c9f125bf70 Black to Block for various files (#42913)
Summary:
Fixes  https://github.com/pytorch/pytorch/issues/41735 #41736 https://github.com/pytorch/pytorch/issues/41737 #41738 all areas where black is mentioned is replaced to block

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42913

Reviewed By: houseroad

Differential Revision: D23112873

Pulled By: malfet

fbshipit-source-id: a515b56dc2ed20aa75741c577988d95f750b364c
2020-08-25 17:43:31 -07:00
BowenBao
a6c8730045 [ONNX] Add preprocess pass for onnx export (#41832)
Summary:
in `_jit_pass_onnx`, symbolic functions are called for each node for conversion. However, there are nodes that cannot be converted without additional context. For example, the number of outputs from split (and whether it is static or dynamic) is unknown until the point where it is unpacked by listUnpack node. This pass does a preprocess, and prepares the nodes such that enough context can be received by the symbolic function.
* After preprocessing, `_jit_pass_onnx` should have enough context to produce valid ONNX nodes, instead of half baked nodes that replies on fixes from later postpasses.
* `_jit_pass_onnx_peephole` should be a pass that does ONNX specific optimizations instead of ONNX specific fixes.
* Producing more valid ONNX nodes in `_jit_pass_onnx` enables better utilization of the ONNX shape inference https://github.com/pytorch/pytorch/issues/40628.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41832

Reviewed By: ZolotukhinM

Differential Revision: D22968334

Pulled By: bzinodev

fbshipit-source-id: 8226f03c5b29968e8197d242ca8e620c6e1d42a5
2020-08-06 20:34:12 -07:00
Ksenija Stanojevic
9b0393fcf1 [ONNX]Fix export of flatten (#40418)
Summary:
Shape is passed to _reshape_to_tensor as a Constant and cannot infer shape of the input when model is exported with dynamic axes set. Instead of a Constant pass output of a subgraph Shape-Slice-Concat to compute the shape for the Reshape node in _reshape_to_tensor function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40418

Reviewed By: hl475

Differential Revision: D22480127

Pulled By: houseroad

fbshipit-source-id: 11853adb6e6914936871db1476916699141de435
2020-07-10 13:06:25 -07:00
Yael Dekel
6e4f501f1a Improve error message for Pad operator (#39651)
Summary:
In issue https://github.com/pytorch/pytorch/issues/36997 the user encountered a non-meaningful error message when trying to export the model to ONNX. The Pad operator in opset 9 requires the list of paddings to be constant. This PR tries to improve the error message given to the user when this is not the case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/39651

Reviewed By: hl475

Differential Revision: D21992262

Pulled By: houseroad

fbshipit-source-id: b817111c2a40deba85e4c6cdb874c1713312dba1
2020-07-06 20:26:02 -07:00
Yael Dekel
766889b6bf ONNX: fix bug in export of ops involving torch.bool type (#40006)
Summary:
When an op involves creating a tensor of a certain type (such as torch.ones(...)), the tracer creates a `prim::Constant` node with an integer value representing the type. The mapping from the torch type to integers maps:
```
torch.complex32 -> 8
torch.complex64 -> 9
torch.complex128 -> 10
torch.bool -> 11
```
However, when the ONNX exporter maps back the integer to torch type, 10 is mapped to bool, 9 is mapped to complex128 and 8 is mapped to complex64.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40006

Reviewed By: hl475

Differential Revision: D22158019

Pulled By: houseroad

fbshipit-source-id: 42fbd6b56566017ff03382c4faf10d30ffde3802
2020-06-22 09:57:25 -07:00
Negin Raoof
b7b99ab0c8 [ONNX] Remove Aten ops from ONNX export (#37239)
Summary:
This PR adds a new operator export type to exporter: ONNX_FALLTHROUGH
This new type allows ops that are not supported to pass through.
This PR also removes all aten ops in ONNX operator export type mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37239

Reviewed By: hl475

Differential Revision: D21440509

Pulled By: houseroad

fbshipit-source-id: 38b826677cf3431ea44868efebefe1ff51c9aa75
2020-05-29 21:20:14 -07:00
Jerry Zhang
70f375becf [quant] ConvPackedParams with TorchBind (#35923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35923

(Note: this ignores all push blocking failures!)

Test Plan:
tbd

Imported from OSS

Differential Revision: D20957089

fbshipit-source-id: 74d8bd628ccba64e902ea6ebabc2b883924050b0
2020-05-05 20:18:36 -07:00
Lara Haidar
728c7dcea3 ONNX Update training ops and training amenable export API (#35567)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35567

Reviewed By: hl475

Differential Revision: D20715339

Pulled By: houseroad

fbshipit-source-id: ad88097e76b169035ab5814b769dc1bed54c6008
2020-03-29 23:14:25 -07:00
Alban Desmaison
45e1be9762 Revert D19710370: [pytorch][PR] ONNX Update training ops and training amenable export API
Test Plan: revert-hammer

Differential Revision:
D19710370

Original commit changeset: e5e79d385529

fbshipit-source-id: d0114dc561a3415869805d3fbf43b92730bbcf54
2020-03-27 06:51:05 -07:00
Lara Haidar
025a0abe5a ONNX Update training ops and training amenable export API (#32950)
Summary:
- Update Dropout and Batchnorm in opset 12 : https://github.com/onnx/onnx/pull/2568
- Update api logic for exporting to ONNX training amenable models
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32950

Reviewed By: hl475

Differential Revision: D19710370

Pulled By: houseroad

fbshipit-source-id: e5e79d38552936966662c41d39ddf33be1ba3e35
2020-03-27 00:39:39 -07:00
anjali411
c73e97033a Added type promotion logic for complex numbers (#34093)
Summary:
Issue: https://github.com/pytorch/pytorch/issues/33780
After this PR:
1. dtype promotion logic will correctly work for ops involving complex scalars
2. added alias for complex64 (cfloat) and complex128 (cdouble)
3. added an internal function get_complex_default_dtype (consciously not exposed in public API)
   - sets the default complex dtype to be double if default_dtype is set to double, else float https://github.com/pytorch/pytorch/pull/34093#discussion_r392350224
>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex64)

>>> torch.set_default_dtype(torch.float64)
>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex128)

>>> 1j + torch.ones(2)
tensor([(1.0000 + 1.0000j), (1.0000 + 1.0000j)], dtype=torch.complex128)

>>> torch.tensor(1j) + torch.ones(2,2)
tensor([[(1.0000 + 1.0000j), (1.0000 + 1.0000j)],
        [(1.0000 + 1.0000j), (1.0000 + 1.0000j)]], dtype=torch.complex128)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34093

Differential Revision: D20537125

Pulled By: anjali411

fbshipit-source-id: 05fb1f81b8ba039d0b698cdd2c0bbf8b0ce0b767
2020-03-25 09:12:21 -07:00
Mike Ruberry
9c4683e8e3 Revert D20312366: [pytorch][PR] Added type promotion logic for complex numbers
Test Plan: revert-hammer

Differential Revision:
D20312366

Original commit changeset: 90f00a1a916d

fbshipit-source-id: 4510739a888b2eec5d8a72e792998ac46da6d82a
2020-03-19 05:55:57 -07:00
anjali411
c8f665dcb6 Added type promotion logic for complex numbers (#34093)
Summary:
Issue: https://github.com/pytorch/pytorch/issues/33780
After this PR:
1. dtype promotion logic will correctly work for ops involving complex scalars
2. torch.ComplexFloatTensor, torch.ComplexDoubleTensor works
3. added alias for complex64 (cfloat) and complex128 (cdouble)
4. added an internal function get_complex_default_dtype (consciously not exposed in public API)

>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex64)

>>> torch.set_default_dtype(torch.float64)
>>> 1j*torch.ones(2)
tensor([(0.0000 + 1.0000j), (0.0000 + 1.0000j)], dtype=torch.complex128)

>>> 1j + torch.ones(2)
tensor([(1.0000 + 1.0000j), (1.0000 + 1.0000j)], dtype=torch.complex128)

>>> torch.tensor(1j) + torch.ones(2,2)
tensor([[(1.0000 + 1.0000j), (1.0000 + 1.0000j)],
        [(1.0000 + 1.0000j), (1.0000 + 1.0000j)]], dtype=torch.complex128)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34093

Differential Revision: D20312366

Pulled By: anjali411

fbshipit-source-id: 90f00a1a916d9c8eeda101eb6e9d250fce569815
2020-03-18 23:36:13 -07:00
Brian Stark
afa8cbf8c2 Modifed randNLike for scripting (#32830)
Summary:
the rand N like function had required args which were not being used.
As such modified the method signature to give default values so when
scripting does not provide these arguments which are not even being
used, no error is thrown.

Additionally modified the const checker for handling prim::Constant as
well
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32830

Reviewed By: hl475

Differential Revision: D19731715

Pulled By: houseroad

fbshipit-source-id: a3cacb3977eecb88b122e0ceb654fdbf1c8286c1
2020-02-06 18:19:42 -08:00
Lara
4502d8c391 Interpolate Float [] support in ONNX (#32554)
Summary:
The PR https://github.com/pytorch/pytorch/pull/31791 adds support for float[] constant, which affects some cases of ONNX interpolate support.
This PR adds float[] constants support in ONNX, updates interpolate in ONNX, and re-enable the disabled tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32554

Reviewed By: hl475

Differential Revision: D19566596

Pulled By: houseroad

fbshipit-source-id: 843f62c86126fdf4f9c0117b65965682a776e7e9
2020-02-04 16:14:40 -08:00
neginraoof
e03e4f3a2d [ONNX] Add einsum export (#32716)
Summary:
Adding symbolic for onnx einsum as part of opset 12
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32716

Reviewed By: hl475

Differential Revision: D19626168

Pulled By: houseroad

fbshipit-source-id: d8cc8af5f05f36aca3cd55dead602261ccdfec51
2020-02-03 12:56:50 -08:00
neginraoof
ffc8e255c4 Sort export w/ negative axes (#31971)
Summary:
Fixing export of Sort on negative axes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31971

Reviewed By: hl475

Differential Revision: D19325874

Pulled By: houseroad

fbshipit-source-id: 18ab2bf39221970c8ab65a1355f5759f88faa54f
2020-01-15 15:13:23 -08:00
BowenBao
c4f10e0fe7 Renaming scales parameter for interpolate (#31526)
Summary:
PR separated from https://github.com/pytorch/pytorch/pull/31274.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31526

Reviewed By: zou3519

Differential Revision: D19221931

Pulled By: gchanan

fbshipit-source-id: 81958a9910867ac9d62f2b47abc49384526c4e51
2020-01-02 08:19:30 -08:00
Lara
97c1e90f46 ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-11 20:09:15 -08:00
Supriya Rao
91c6d2e51c Add support for quantized operator conversion from PT to C2 via ONNX (#29694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29694

This PR adds preliminary support required to be able to run quantized pytorch models on a C2 backend.
For quantized ops we use a custom domain name 'caffe2' to register the ops if they are in the "quantized" namespace.
The change also adds JIT pass to unpack the quantized weights and insert the unpacked values into the graph.
The actual tensor values are looked up from the params dict.

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2.py TestQuantizedOps

Imported from OSS

Reviewed By: houseroad

Differential Revision: D18467130

fbshipit-source-id: 53ebd8c43935f7d7e74305dad6c231a2247df176
2019-11-18 12:12:40 -08:00
Lara
2acca09e1a Add Support for ONNX scripting Interpolate with missing shape (#29489)
Summary:
- Add support for missing case where interpolate is exported with missing shape information in scripting
- Add warnings
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29489

Reviewed By: hl475

Differential Revision: D18438872

Pulled By: houseroad

fbshipit-source-id: d01f833bec0cc4e881ddc18e7054d22f54e9886b
2019-11-11 21:20:14 -08:00
eellison
e01fc56ecb move type inference for arange into c++ (#27629)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17662

I'm not sure if `arange` needs to be in python_arg_parser at all, given the schemas in native_functions.yaml. In any case this at least fixes the dytpe mismatch.

In follow up PRs I will try to handle some of the other ops that do type inference at the python level, like randint.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27629

Differential Revision: D17885939

Pulled By: eellison

fbshipit-source-id: f97a8bc722b7ab77de1c42a992e49a4a3175ad60
2019-11-11 11:26:21 -08:00
Negin Raoof
ebc216a076 Opset 11 updates (#28225)
Summary:
This PR contains:
1- pad updates for opset11 symbolic
2- Updated avg_pool for opset11
3- TopK updates for opset 11
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28225

Reviewed By: hl475

Differential Revision: D18282928

Pulled By: houseroad

fbshipit-source-id: aff2cabca9a155a9b475e35fed69a678544d6669
2019-11-04 12:16:12 -08:00
Sergei Nikolaev
1e2049c566 #26426 fixed (#28715)
Summary:
This is the fix for reverted https://github.com/pytorch/pytorch/issues/26426
houseroad bddppq soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28715

Reviewed By: hl475

Differential Revision: D18146731

Pulled By: houseroad

fbshipit-source-id: 247366451a6334e84df82d00339521f797b33130
2019-11-01 12:53:01 -07:00
Junjie Bai
d37c2d7c8d Revert D17495965: TensorRT 6.0 support and PyTorch->ONNX->TRT6 unit test
Test Plan: revert-hammer

Differential Revision:
D17495965

Original commit changeset: 3e8dbe8943f5

fbshipit-source-id: d47fcbec22b0d61df41d7dbf15cfdde196ac818f
2019-10-25 13:58:16 -07:00
Sergei Nikolaev
4996e3aca2 TensorRT 6.0 support and PyTorch->ONNX->TRT6 unit test (#26426)
Summary:
This PR makes Caffe2 compatible with TensorRT 6. To make sure it works well, new unit test is added. This test checks PyTorch->ONNX->TRT6 inference flow for all classification models from TorhchVision Zoo.
Note on CMake changes: it has to be done in order to import onnx-tensorrt project. See https://github.com/pytorch/pytorch/issues/18524 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26426

Reviewed By: hl475

Differential Revision: D17495965

Pulled By: houseroad

fbshipit-source-id: 3e8dbe8943f5a28a51368fd5686c8d6e86e7f693
2019-10-25 13:01:57 -07:00
Lara
d762ad09df Enable Interpolate Tests for ONNX Opset 11 (#28560)
Summary:
- Enable tests for Interpolate in opset 11 for nearest and linear2d modes (linear1d/3d not implemented yet)
- Fix bugs found after enabling tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28560

Reviewed By: hl475

Differential Revision: D18110680

Pulled By: houseroad

fbshipit-source-id: 7f8811e40dc5cedaba6389460dcca52daa048f5f
2019-10-24 14:21:13 -07:00
neginraoof
95922c90b5 Export update for arange and _dim_arange (#26875)
Summary:
Export arange and _dim_arange using onnx::range in opset 11
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26875

Reviewed By: hl475

Differential Revision: D17623848

Pulled By: houseroad

fbshipit-source-id: 41f0066ca1c42882ccc051a3ee5448dca25ee5d2
2019-10-17 13:55:45 -07:00
Lara
735463f210 ONNX Export Scripted Interpolate Op (#27566)
Summary:
We currently support exporting traced interpolate ops to ONNX.

Scripting interpolate op invokes aten::__interpolate in the Torch IR (instead of aten::upsample_[mode][dim]d), which we do not support yet.
This PR implements the ONNX symbolic for __interpolate() to support exporting interpolate in scripting scenarios.

Related open issue: https://github.com/pytorch/pytorch/issues/25807
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27566

Reviewed By: hl475

Differential Revision: D17817731

Pulled By: houseroad

fbshipit-source-id: e091793df503e2497f24821cf2954ff157492c75
2019-10-16 11:22:22 -07:00
Negin Raoof
3d2c90131a opset 11 updates (#27578)
Summary:
Opset 11 updates:
- Enabled ORT tests for updated ops in opset 11
- Updated index_copy and index_fill symbolic for opset 11 to modify onnx::Scatter -> onnx::ScatterElemets
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27578

Reviewed By: hl475

Differential Revision: D17852462

Pulled By: houseroad

fbshipit-source-id: c88747804054d0f3455f2c58fd1d8725e0b2f803
2019-10-11 16:18:40 -07:00
Lara Haidar
2093fac4ee ONNX Export ConstantOfShape with default dtype (#27577)
Summary:
Exporting a scripted module to ONNX, with ops like torch.zeros(), fails when the dtype is not specified.
This PR adds support to exporting scripted torch.zeros() ops (and similar ops) without specifying the dtype (dtype will default to float).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27577

Reviewed By: hl475

Differential Revision: D17822318

Pulled By: houseroad

fbshipit-source-id: b2d4300b869e782a9b72534fea1263eb83744953
2019-10-09 17:05:35 -07:00
Negin Raoof
c874dd91a7 export remainder (#24410)
Summary:
Added ONNX export support for torch.remainder and torch.fmod
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24410

Reviewed By: hl475

Differential Revision: D17466791

Pulled By: houseroad

fbshipit-source-id: afe6519e5f370824e3b4a45b69036a7260fb72cf
2019-10-03 20:15:20 -07:00
Negin Raoof
d93fc64776 Update export for topk and sort (#25739)
Summary:
updated export for topk and sort as part of opset11
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25739

Reviewed By: hl475

Differential Revision: D17467131

Pulled By: houseroad

fbshipit-source-id: 653be138455728ec8e9bb81ae63dd7ce0c4d0793
2019-10-02 12:20:30 -07:00
Lara
d396c7332a Update ONNX Export for Interpolate in Opset 11 (#26778)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26778

- Add support for linear and cubic interpolate in opset 11.
- Add support for 1d and 3d interpolate in nearest mode for opset 7 and 8.
- Add tests for all cases of interpolate in ORT tests (nearest/linear/cubic, 1d/2d/3d, upsample/downsample).
Original PR resolved: https://github.com/pytorch/pytorch/pull/24805

Reviewed By: hl475

Differential Revision: D17564911

Pulled By: houseroad

fbshipit-source-id: 591e1f5b361854ace322eca1590f8f84d29c1a5d
2019-09-25 05:43:20 -07:00
Edward Yang
1bb895e1c1 Revert D17330801: [pytorch][PR] Update ONNX Export for Interpolate in Opset 11
Test Plan: revert-hammer

Differential Revision:
D17330801

Original commit changeset: 1bdefff9e72f

fbshipit-source-id: dff07477403170c27260f736ab6e6010f0deca9f
2019-09-24 18:56:45 -07:00
Lara
de3d4686ca Update ONNX Export for Interpolate in Opset 11 (#24805)
Summary:
- Add support for linear and cubic interpolate in opset 11.
- Add support for 1d and 3d interpolate in nearest mode for opset 7 and 8.
- Add tests for all cases of interpolate in ORT tests (nearest/linear/cubic, 1d/2d/3d, upsample/downsample).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24805

Reviewed By: hl475

Differential Revision: D17330801

Pulled By: houseroad

fbshipit-source-id: 1bdefff9e72f5e70c51f4721e1d7347478b7505b
2019-09-24 16:29:57 -07:00
Lara
c79d116a7d Update ONNX Export for Gather and Scatter for Opset 11
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24790

Reviewed By: hl475

Differential Revision: D17159723

Pulled By: houseroad

fbshipit-source-id: a63bb7c681120de85588dafecd03f04742dde8b7
2019-09-23 17:13:25 -07:00
Zachary DeVito
bdc57d3833 Merge ProfiledTensorType and TensorType (#24284)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24284

This PR finishes the unification of all Tensor types into a single object.
ProfiledTensorType is renamed to TensorType and the old TensorType is
deleted.

Notes:
* Fixes bug in merge for VaryingShape by changing its representation to an
 optional list of optional ints.
* Removes ProfiledTensorType::create(type) invocations that can now
  simply be expect calls on tensor type.

Test Plan: Imported from OSS

Differential Revision: D16794034

Pulled By: zdevito

fbshipit-source-id: 10362398d0bb166d0d385d74801e95d9b87d9dfc
2019-08-20 13:01:28 -07:00
Zachary DeVito
0cbd7fa46f remove CompleteTensorType
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24169

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D16765329

Pulled By: zdevito

fbshipit-source-id: 88560cefba635c3d586a3e4dee67f9b1d901a642
2019-08-15 13:31:34 -07:00
neginraoof
3574d9ff70 updated pixel_shuffle in opset 11 to use depthToSpace
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23739

Differential Revision: D16800355

Pulled By: bddppq

fbshipit-source-id: 1502c5b7ec1495286bad17b6ffa359cf995f78fb
2019-08-15 11:37:44 -07:00
Zachary DeVito
c2549cb8d3 Remove DimensionedTensorType (#24077)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24077

This replaces all uses of DimensionedTensorType with ProfiledTensorType.
For places where we propagate shape information, we still follow the
dimension-only propagation rules, meaning that even if full size information
is known on inputs the outputs will only have dimension information.

This fixes several bugs in existing implentations that this change uncovered:
* requires_grad was not propgated correctly across loops
* requires_grad on ProfiledTensorType returned false when requires_grad information
  is unknown but the conservative result is true
* some equality code on ProfiledTensorType contained bugs.

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D16729581

Pulled By: zdevito

fbshipit-source-id: bd9f823c1c6b1d06a236a1b5b2b2fcdf0245edce
2019-08-13 10:05:47 -07:00
Nikolay Korovaiko
3d15ee1b34 Remove more uses of DimensionedTensorType
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23060

Differential Revision: D16460391

Pulled By: Krovatkin

fbshipit-source-id: b50ee87d22ad18b8cbfff719b199ea876ef172f1
2019-08-01 21:19:28 -07:00
liqunfu
83d6c6be07 ONNX export for index_select (#21866)
Summary:
ONNX export for index_select
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21866

Reviewed By: zrphercule

Differential Revision: D16471345

Pulled By: houseroad

fbshipit-source-id: 745c23ba8a3223b5ec59b924df7358a36a92518c
2019-07-26 13:56:15 -07:00
BowenBao
a35136dd73 Add support for onnx tensor index export (#21716)
Summary:
Support exporting
* Standard tensor indexing like
```
x = torch.ones(4, 5)
ind = torch.tensor([0, 1])

return x[ind]
```
* [Advanced indexing](https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing) like
```
x = torch.ones(4,5,6,7,8)
ind1 = torch.tensor([0, 1])
ind2 = torch.tensor([[3], [2]])
ind3 = torch.tensor([[2, 2], [4, 5]])

return x[2:4, ind1, None, ind2, ind3, :]
```
It would be ideal if ONNX can natively support indexing in future opsets, but for opset <= 10 it will always need this kind of workarounds.

There are still various limitations, such as not supporting advanced indexing with negative indices, not supporting mask indices of rank > 1, etc. My feeling is that these are less common cases that requires great effort to support using current opset, and it's better to not make the index export more cumbersome than it already is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21716

Reviewed By: zrphercule

Differential Revision: D15902199

Pulled By: houseroad

fbshipit-source-id: 5f1cc687fc9f97da18732f6a2c9dfe8f6fdb34a6
2019-07-23 17:11:28 -07:00
BowenBao
b3147bc674 PyTorch export to ONNX Opset 7 and 8 - Cont (#22421)
Summary:
This is an extension to the original PR https://github.com/pytorch/pytorch/pull/21765

1. Increase the coverage of different opsets support, comments, and blacklisting.
2. Adding backend tests for both caffe2 and onnxruntime on opset 7 and opset 8.
3. Reusing onnx model tests in caffe2 for onnxruntime.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22421

Reviewed By: zrphercule

Differential Revision: D16225518

Pulled By: houseroad

fbshipit-source-id: 01ae3eed85111a83a0124e9e95512b80109d6aee
2019-07-12 14:52:48 -07:00
Brian Vaughan
97a604ef57 Rereapply optional ScalarType interface changes that were reverted in D16079809 (#22456)
Summary:
re-apply changes reverted in:
https://github.com/pytorch/pytorch/pull/22412

Also change log_softmax to take positional arguments. Long-term we do want the kwarg-only interface, but seems to currently be incompatible with jit serialization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22456

Differential Revision: D16097159

Pulled By: nairbv

fbshipit-source-id: 8cb73e9ca18fc66b35b873cf4a574b167a578b3d
2019-07-03 20:03:25 -07:00
Lara Haidar
7ca7edc307 ONNX Export LayerNorm
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22265

Reviewed By: zrphercule

Differential Revision: D16076268

Pulled By: houseroad

fbshipit-source-id: 29b4ecab2fa0dc7250c9d1ad6924903181a66ab2
2019-07-02 09:37:07 -07:00
Lu Fang
de84104059 Lint ONNX Related Code (#22423)
Summary:
Lint the code
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22423

Differential Revision: D16086518

Pulled By: houseroad

fbshipit-source-id: c6e5143f42c73a70beeaa2e089df4164f6265c32
2019-07-01 21:44:16 -07:00
Wanchao Liang
dff2c07183 Manual revert of D16012838
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22412

Reviewed By: nairbv, houseroad

Differential Revision: D16079809

fbshipit-source-id: ee0d805ff7a2bc5f98bcc65f90b8199751c840f6
2019-07-01 19:58:21 -07:00
Brian Vaughan
7707dee761 Re apply optional ScalarType changes (#22237)
Summary:
This is (mostly) the re-application of:
https://github.com/pytorch/pytorch/pull/21088

which was reverted due to an issue conflicting with changes in:
https://github.com/pytorch/pytorch/pull/22104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22237

Differential Revision: D16012838

Pulled By: nairbv

fbshipit-source-id: 35f4a73c97ab68b4e2648aca96b2176f07b5a883
2019-06-26 13:36:25 -07:00
Michael Suo
e016a424ef Revert D15944971: [pytorch][PR] merge interfaces that have an optional scalartype parameter
Differential Revision:
D15944971

Original commit changeset: 53473c370813

fbshipit-source-id: a18158b448cb8993b12e1a3bf2c2a3e0d6df6b10
2019-06-24 09:41:33 -07:00
Brian Vaughan
142361a7e4 merge interfaces that have an optional scalartype parameter (#21088)
Summary:
This change is backwards incompatible in *C++ only* on mean(), sum(), and prod() interfaces that accepted either of:
```
Tensor sum(IntArrayRef dim, bool keepdim=false) const;
Tensor sum(IntArrayRef dim, ScalarType dtype) const;
```
but now to specify both the dim and dtype will require the keepdim parameter:
```
Tensor sum(IntArrayRef dim, bool keepdim=false, c10::optional<ScalarType> dtype=c10::nullopt) const;
```

[xla ci]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21088

Reviewed By: ailzhang

Differential Revision: D15944971

Pulled By: nairbv

fbshipit-source-id: 53473c370813d9470b190aa82764d0aea767ed74
2019-06-24 07:17:58 -07:00
Lara
34aee933f9 ONNX Export Interpolate (Resize) for opset version 10
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21434

Reviewed By: zrphercule

Differential Revision: D15777197

Pulled By: houseroad

fbshipit-source-id: 517b06a54a234ffdb762401e83f5a732023ed259
2019-06-19 13:40:27 -07:00
Lara
cc85c3dbbc ONNX Export Slice and Flip ops for opset 10
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20533

Reviewed By: zrphercule

Differential Revision: D15579713

Pulled By: houseroad

fbshipit-source-id: 91f3ac0cb14ef226f980362b0013b6b92cb8b8da
2019-06-07 10:03:26 -07:00
Iurii Zdebskyi
ff0d00f921 Updated scalar type to onnx mapping (#21095)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21095
ghimport-source-id: 32a79eace02216de9170f163027b1aa93756b821

Differential Revision: D15546175

Pulled By: izdeby

fbshipit-source-id: 4e47c8538aaf30b4af198baac7279133e4d74b36
2019-05-30 17:11:12 -07:00
BowenBao
fa189641b5 Add export for __and__ & __or__ (#17894)
Summary:
In onnx spec, the supported input/output type for `And` and `Or` is `Bool` only.
Thus in exporting, cast to/from `Bool` is inserted for input/output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17894

Reviewed By: zrphercule

Differential Revision: D15103148

Pulled By: houseroad

fbshipit-source-id: 3e1068ea236c743260d42882fb11f0e3a21707e6
2019-05-16 13:52:06 -07:00
Lara Haidar
f4d9bfaa4d Support Exports to Multiple ONNX Opset (#19294)
Summary:
Support exporting multiple ONNX opsets (more specifically opset 10 for now), following the proposal in https://gist.github.com/spandantiwari/99700e60919c43bd167838038d20f353.
And add support for custom ops (merge with https://github.com/pytorch/pytorch/pull/18297).

This PR will be followed by another PR containing the changes related to testing the ops for different opsets.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19294

Reviewed By: zrphercule

Differential Revision: D15043951

Pulled By: houseroad

fbshipit-source-id: d336fc35b8827145639137bc348ae07e3c14bb1c
2019-05-10 18:37:12 -07:00