Commit Graph

252 Commits

Author SHA1 Message Date
linhaifeng
369f2d6951 [3/N] fix typo in other folders (#166606)
fix typo in other folders

#166374
#166126

_typos.toml
```bash
[files]
extend-exclude = ["tools/linter/dictionary.txt"]
[default.extend-words]
nd = "nd"
arange = "arange"
Nd = "Nd"
GLOBALs = "GLOBALs"
hte = "hte"
iy = "iy"
PN = "PN"
Dout = "Dout"
optin = "optin"
gam = "gam"
PTD = "PTD"
Sur = "Sur"
nin = "nin"
tme = "tme"
inpt = "inpt"
mis = "mis"
Raison = "Raison"
ouput = "ouput"
nto = "nto"
Onwer = "Onwer"
callibrate = "callibrate"
ser = "ser"
Metdata = "Metdata"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166606
Approved by: https://github.com/ezyang
2025-10-30 10:30:40 +00:00
Maggie Moss
27302a4932 Fix error suppression syntax in onnx, jit, _dynamo (#166249)
Ensures pyrefly will only silence one specific error code

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166249
Approved by: https://github.com/oulgen
2025-10-27 02:01:54 +00:00
Yuanyuan Chen
a029675f6f More ruff SIM fixes (#164695)
This PR applies ruff `SIM` rules to more files. Most changes are about simplifying `dict.get` because `None` is already the default value.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164695
Approved by: https://github.com/ezyang
2025-10-09 03:24:50 +00:00
Maggie Moss
086dec3235 Pyrefly suppressions 6/n (#164877)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Almost there!

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:

INFO 0 errors (5,064 ignored)

Only four directories left to enable

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164877
Approved by: https://github.com/oulgen
2025-10-08 02:30:57 +00:00
Yuanyuan Chen
a43c4c3972 [5/N] Apply ruff UP035 rule (#164423)
Continued code migration to enable ruff `UP035`. Most changes are about moving `Callable` from `typing` to `from collections.abc`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164423
Approved by: https://github.com/ezyang
2025-10-02 07:31:11 +00:00
Justin Chu
419a2dbf5f [ONNX] Remove enable_fake_mode and exporter_legacy (#161222)
Remove enable_fake_mode and exporter_legacy entirely. Even though this is bc breaking, `enable_fake_mode` is no longer compatible with the latest version of transformers, and so it is no longer useful.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161222
Approved by: https://github.com/titaiwangms
2025-08-22 22:15:27 +00:00
Ti-Tai Wang
3f83e3eeca [ONNX] Remove legacy registration and dispatcher (#158283)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158283
Approved by: https://github.com/Skylion007, https://github.com/justinchuby
ghstack dependencies: #158258, #158262, #158282
2025-07-15 21:00:49 +00:00
Ti-Tai Wang
e4c17d5e1c [ONNX] Remove fx_onnx_interpreter.py (#158282)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158282
Approved by: https://github.com/Skylion007, https://github.com/justinchuby
ghstack dependencies: #158258, #158262
2025-07-15 20:46:06 +00:00
Ti-Tai Wang
205241a0d5 [ONNX] Remove legacy dynamo graph extractor (#158262)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158262
Approved by: https://github.com/justinchuby
ghstack dependencies: #158258
2025-07-15 20:21:49 +00:00
Ti-Tai Wang
5fb07acbc3 [ONNX] Remove legacy modularization (#158257)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158257
Approved by: https://github.com/justinchuby
ghstack dependencies: #158255, #158256
2025-07-15 04:36:01 +00:00
Ti-Tai Wang
336bff6d58 [ONNX] Remove legacy graph passes (#158256)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158256
Approved by: https://github.com/justinchuby
ghstack dependencies: #158255
2025-07-15 04:27:30 +00:00
Ti-Tai Wang
12151c96d9 [ONNX] Remove legacy io_adapter (#158255)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158255
Approved by: https://github.com/justinchuby
2025-07-15 03:39:18 +00:00
Xuehai Pan
db259bd6b8 [BE][12/16] fix typos in torch/ (#156602)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156602
Approved by: https://github.com/justinchuby, https://github.com/albanD
ghstack dependencies: #156318, #156320
2025-07-02 22:55:29 +00:00
Oguz Ulgen
d1947a8707 Migrate from lru_cache to cache (#155613)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155613
Approved by: https://github.com/ezyang
ghstack dependencies: #155612
2025-06-11 19:44:18 +00:00
Aaron Gokaslan
6b1211df29 [BE]: Backport runtime_checkable perf improvements/behavior from 3.12 (#155130)
Backports some behavior changes and performance improvements with runtime_checkable in 3.12 to older versions of Python. Should be free performance improvement on typing checking protocols since everything works on Python 3.12.

The difference between the two versions of runtime_checkable is [these lines](40e22ebb2c/src/typing_extensions.py (L800-L823)).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155130
Approved by: https://github.com/rec, https://github.com/aorenste
2025-06-06 13:28:05 +00:00
Justin Chu
6ae8eb881c [ONNX] Clean up the diagnostics module (#149864)
Remove the diagnostics/SARIF module from ONNX exporter because it is obsolete unused.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149864
Approved by: https://github.com/titaiwangms
2025-03-26 05:58:32 +00:00
PyTorch MergeBot
30e8be599f Revert "[ONNX] Clean up the diagnostics module (#149864)"
This reverts commit cc6e300fe2.

Reverted https://github.com/pytorch/pytorch/pull/149864 on behalf of https://github.com/malfet due to This indeed broke Mac testing see 1c98dc3664/1 ([comment](https://github.com/pytorch/pytorch/pull/149864#issuecomment-2752317873))
2025-03-25 19:31:50 +00:00
Justin Chu
cc6e300fe2 [ONNX] Clean up the diagnostics module (#149864)
Remove the diagnostics/SARIF module from ONNX exporter because it is obsolete unused.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149864
Approved by: https://github.com/titaiwangms
2025-03-25 16:58:46 +00:00
Justin Chu
2dccd70ef0 [ONNX] Clean up legacy dynamo export code (#149745)
Clean up code that is unused and obsolete. The public `torch.onnx.dynamo_export` is kept for now but the legacy implementation is removed.

Remove public option classes and OnnxRegistry that have been deprecated.

Users: use torch.onnx.export(…, dynamo=True).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149745
Approved by: https://github.com/titaiwangms, https://github.com/cyyever
2025-03-23 19:35:16 +00:00
Justin Chu
c6a05df174 [ONNX] Use onnxscript apis for 2.7 (#148453)
Use onnxscript apis for 2.7.

Remove reference to `torchlib_opset()` and `torchlib_opset_version()` which were removed in the onnxscript 2.7 apis. These apis were removed because torchlib in onnxscript will always stay on opset 18. Future opset version bumps will happen in pytorch core after the migration of torchlib.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148453
Approved by: https://github.com/titaiwangms, https://github.com/shubhambhokare1
2025-03-05 20:10:00 +00:00
Xuehai Pan
c73a92fbf5 [BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546)
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements

> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
>     len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
>     f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
2025-02-27 20:46:16 +00:00
Xuehai Pan
52f6d4aa30 [BE][CI][Easy] bump ruff to 0.9.0: long statements in docstrings (#146509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146509
Approved by: https://github.com/justinchuby, https://github.com/Skylion007
2025-02-24 19:56:08 +00:00
Aaron Orenstein
086d146f6f Update ruff linter for PEP585 (#147540)
This turns on PEP585 enforcement in RUFF.

- Updates the target python version
- Stops ignoring UP006 warnings (PEP585)
- Fixes a few issues which crept into the tree in the last day

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147540
Approved by: https://github.com/justinchuby, https://github.com/Skylion007
2025-02-22 04:45:17 +00:00
Aaron Gokaslan
6344ca1dd4 [BE][Ez]: Apply FURB188: use str remove(pre|suf)fix (#146997)
Since we are on 3.9, we can use this nice str builtin which is more readable and more efficient.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146997
Approved by: https://github.com/XuehaiPan, https://github.com/cyyever, https://github.com/jansel
2025-02-14 03:38:07 +00:00
Justin Chu
1f6b566d74 [ONNX] Bump onnx and onnxscript versions in CI (#146097)
Bump onnx onnxscript==0.1 in CI; Skipped onnxruntime 1.19 because it has regression on avgpool.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146097
Approved by: https://github.com/malfet
2025-02-05 21:00:25 +00:00
Aaron Gokaslan
292af3cc89 [BE][Ez]: ISC001 Auto concatenate implicit one line strings (#146408)
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2025-02-04 19:07:04 +00:00
Randolf Scholz
835e770bad Use typing.IO[bytes] instead of io.BytesIO in annotations (#144994)
Fixes #144976

Using appoach ① `IO[bytes]`, but could also try with a protocol.

## Notes:

- moved `torch.serialization.FILE_LIKE` to `torch.types.FileLike`
- Use `FileLike` annotation where it makes sense
- made sure those functions also support `os.PathLike`
- Replaced `isinstance(x, io.BytesIO)` with `isinstance(x, (io.IOBase, IO))` where appropriate.
- Replaced `BinaryIO` with `IO[bytes]` (the two ABCs are almost identical, the only difference is that `BinaryIO` allows `bytearray` input to `write`, whereas `IO[bytes]` only `bytes`)
- needed to make `torch.serialization._opener` generic to avoid LSP violations.
- skipped `torch/onnx/verification` for now (functions use `BytesIO.getvalue` which is not part of the `IO[bytes]` ABC, but it kind of seems that this is redundant, as e.g. `onnx.load` supports `str | PathLike[str] | IO[bytes]` directly...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144994
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-01-27 18:08:07 +00:00
Aaron Orenstein
2b809e58ad PEP585 update - torch/onnx (#145174)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145174
Approved by: https://github.com/justinchuby
2025-01-20 05:48:52 +00:00
Justin Chu
fb4b5a9299 [ONNX] Use python_dispatcher in type promotion (#144801)
Fix #143118

Use python_dispatcher in the type promotion pass to preserve symbolic shapes according to @angelayi 's suggestions. (Thanks!)

Tested locally. I wasn't able to create a minimal repro except for using the full model
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144801
Approved by: https://github.com/titaiwangms
2025-01-15 23:25:19 +00:00
Xuehai Pan
b77406a9ec [BE][CI] bump ruff to 0.8.4 (#143753)
Changes:

1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
2024-12-24 12:24:10 +00:00
Fabian Keller
5e8e1d725a Remove some unused type ignores (round 1) (#142325)
Over time, a large number of the existing type ignores have become irrelevant/unused/dead as a result of improvements in annotations and type checking.

Having these `# type: ignore` linger around is not ideal for two reasons:

- They are verbose/ugly syntatically.
- They could hide genuine bugs in the future, if a refactoring would actually introduce a bug but it gets hidden by the ignore.

I'm counting over 1500 unused ignores already. This is a first PR that removes some of them. Note that I haven't touched type ignores that looked "conditional" like the import challenge mentioned in https://github.com/pytorch/pytorch/pull/60006#issuecomment-2480604728. I will address these at a later point, and eventually would enable `warn_unused_ignores = True` in the mypy configuration as discussed in that comment to prevent accumulating more dead ignores going forward.

This PR should have no effect on runtime at all.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142325
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
2024-12-09 18:23:46 +00:00
Fabian Keller
8cb68b136f Proper modeling of recursive types (#142300)
Currently there are a few type annotations that falsely state that mypy doesn't support recursive types.

Recursive type support is available in mypy for a few years already. It has been officially enabled in [version 0.991](https://mypy-lang.blogspot.com/2022/11/mypy-0990-released.html). Pyright even had support for recursive types earlier (https://github.com/microsoft/pyright/issues/569), so there is probably no reason not to model these types correctly.

This PR models these types properly now. Since this has turned a few implicit `Any` into fully typed variables that are not narrowed cleanly, a small number of type ignores were necessary.

Note that regarding the `Argument` it is desirable to model it in a covariant way (i.e. using `Sequence` and `Mapping`) instead of making it invariant unnecessarily (using `List` and `Dict`). If it were modeled invariant, it would for instance mean that a `List[Node]` would not type check as `Argument`, because invariance would mean that it really has to be a `List[Argument]` (i.e., including all the branches of the union type). Since even the name of the type "argument" strongly suggest that it is semantically used as "argument", having covariance natural anyway.

There are no chances in this PR that affect runtime behavior.

CC @Skylion007

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142300
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2024-12-07 21:30:45 +00:00
Justin Chu
419b566e54 [ONNX] Use the torchlib opset number and fix opset import logic (#141413)
- Update the ONNX IR `add_opset_imports` pass to remove the heuristics of taking the `max` of the seen opsets. Instead, it uses the torchlib default opset version for the model's opset_import. The version converter is able to take the true opset versions in the nodes and convert the model to the correct version.
- Update all hard coding of opset 18 to instead query the default torchlib opset from onnxscript, introduced in https://github.com/microsoft/onnxscript/pull/1963

Fixes https://github.com/pytorch/pytorch/issues/141260
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141413
Approved by: https://github.com/titaiwangms
2024-11-25 17:33:25 +00:00
Justin Chu
387b120549 [ONNX] Remove type promotion rule for pow (#139527)
ONNX supports different input types in Pow, so type promotion is not needed.

The resulting graph is the following:

```py
ONNXProgram(
    model=
        <
            ir_version=9,
            opset_imports={'': 18, 'pkg.onnxscript.torch_lib.common': 1},
            producer_name='pytorch',
            producer_version='2.6.0a0+git59a1af5',
            domain=None,
            model_version=None,
        >
        graph(
            name=main_graph,
            inputs=(
                %"x"<FLOAT16,[3]>
            ),
            outputs=(
                %"pow_1"<FLOAT16,[3]>
            ),
        ) {
            0 |  # node_Constant_0
                 %"val_0"<?,?> ⬅️ ::Constant() {value=Tensor<FLOAT,[]>(array(2., dtype=float32), name=None)}
            1 |  # node_Pow_1
                 %"pow_1"<FLOAT16,[3]> ⬅️ ::Pow(%"x", %"val_0")
            return %"pow_1"<FLOAT16,[3]>
        }
...
    ,
    exported_program=
        ExportedProgram:
            class GraphModule(torch.nn.Module):
                def forward(self, x: "f16[3]"):
                     # File: /workspace/pytorch/test/onnx/exporter/test_small_models_e2e.py:53 in forward, code: return x**2.0
                    pow_1: "f16[3]" = torch.ops.aten.pow.Tensor_Scalar(x, 2.0);  x = None
                    return (pow_1,)

        Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='pow_1'), target=None)])
        Range constraints: {}

)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139527
Approved by: https://github.com/titaiwangms
2024-11-02 02:19:50 +00:00
Tom Ritchford
c0582fd0f8 Remove unused Python variables in torch/[b-z]* (#136963)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136963
Approved by: https://github.com/ezyang
2024-10-19 16:45:22 +00:00
Avik Chaudhuri
ed55d356de [alt] fix unroll in successive unflatten (#137646)
We use nn_module_stack in unflatten to recognize when module calls begin and end. However the current format is not sufficient to detect module call boundaries when we have successive calls to the same module, because the successive instructions (end of one call, begin of next call) have the same nn_module_stack. This causes us to effectively "unroll" successive calls to a single call. This can cause problems when preserving module call signatures because the outputs of the successive calls might be concatenated in the single call.

Previously we introduced the concept of a "call index" to generate multiple graphs when unflattening, one per call. This PR pushes this concept into nn_module_stack itself. In particular, the keys of nn_module_stack now go from `key` to `key@call_index`. (In a previous attempt, https://github.com/pytorch/pytorch/pull/137457, instead values in nn_module_stack go from (fqn, type) to (fqn, type, call_index), which is BC-breaking.)

Note that we still do not have the ability to preserve module call signatures for multiple calls to the same module. But now instead of randomly crashing we give a proper error. OTOH when not preserving module call signatures we simply generate multiple calls, each with its own graph, possibly deduplicated, matching what we would do for non-successive calls.

Test Plan: Like D64014936

Differential Revision: D64136277

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137646
Approved by: https://github.com/angelayi
2024-10-12 15:53:52 +00:00
Edward Z. Yang
6bd9d37266 Remove allow-untyped-defs from torch.fx.experimental.symbolic_shapes (#137019)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137019
Approved by: https://github.com/Skylion007
ghstack dependencies: #136934, #136935, #136972
2024-10-01 13:22:10 +00:00
Justin Chu
0aa41eb52f [ONNX] Run type promotion test in CI and update the table (#135915)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135915
Approved by: https://github.com/gramalingam, https://github.com/xadupre
2024-09-16 16:46:13 +00:00
titaiwangms
8f6e73f068 [ONNX] Enable experimental exporter logic to dynamo_export and support refine dynamic_shapes (#134976)
(1) Enable experimental exporter logic to dynamo_export
(2) Refine dynamic shapes and retry export in export strategies
(3) Delete `torch_export_graph_extractor` and use the new export logic
(4) Disable ExportedProgram test in `test_fx_onnx_with_onnxruntime.py`, as ONNXProgram is different now.

Fixes https://github.com/pytorch/pytorch/issues/126479
Fixes #135183
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134976
Approved by: https://github.com/justinchuby
2024-09-06 01:29:56 +00:00
titaiwangms
45f11094b6 [ONNX] Delete op_level_debug from torch.onnx.ExportOptions (#134961)
op_level_debug helped to identify missing operators, and wrongly implemented operators at the time that dynamo exporter relied on nearest matching and torchlib was just created. However, right now, with dispatcher logic improved and torchlib becomes mature, we no longer need it.

PS: op-level-debug diagnostics rule is not deleted in this PR, as it auto generates lint error code, and need more time to fix. We can delete it when we retire sarif.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134961
Approved by: https://github.com/justinchuby
2024-09-02 23:38:39 +00:00
Justin Chu
b319fa3fd9 [ONNX] Opt into ruff fmt (#134120)
Add ONNX directory to use ruff format.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134120
Approved by: https://github.com/XuehaiPan, https://github.com/Skylion007
2024-08-22 22:44:03 +00:00
Aaron Orenstein
d95aedf5fd [BE] typing for decorators - fx/_compatibility (part 1) (#134202)
Part of #134054.

This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
2024-08-22 17:07:33 +00:00
PyTorch MergeBot
b0171c3920 Revert "[ONNX] Opt into ruff fmt (#134120)"
This reverts commit 0870398fa8.

Reverted https://github.com/pytorch/pytorch/pull/134120 on behalf of https://github.com/albanD due to Breaks main branch lint ([comment](https://github.com/pytorch/pytorch/pull/134120#issuecomment-2305089756))
2024-08-22 15:48:14 +00:00
Justin Chu
0870398fa8 [ONNX] Opt into ruff fmt (#134120)
Add ONNX directory to use ruff format.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134120
Approved by: https://github.com/XuehaiPan, https://github.com/Skylion007
2024-08-21 21:43:55 +00:00
Justin Chu
afb3e5ed6a Add onnx and onnxscript to CI requirements (#133647)
Add onnx and onnxscript to requirements-ci.txt to allow for `test_public_bindings` and mypy to function when checking `torch.onnx._internal` code as @malfet suggested.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133647
Approved by: https://github.com/titaiwangms, https://github.com/kit1980
2024-08-19 22:15:07 +00:00
PyTorch MergeBot
8d404581fc Revert "[ONNX] New export logic leveraging ExportedProgram and ONNX IR (#132530)"
This reverts commit 5fab35d77c.

Reverted https://github.com/pytorch/pytorch/pull/132530 on behalf of https://github.com/ZainRizvi due to Sorry but it seems like Dr. CI incorrectly flagged the [pull / linux-docs / build-docs-python-false](https://hud.pytorch.org/pr/pytorch/pytorch/132530#28918577682) failure as being flaky. The job started failing consistently on CI once your PR was merged. [GH job link](https://github.com/pytorch/pytorch/actions/runs/10454830880/job/28949386844) [HUD commit link](5fab35d77c) ([comment](https://github.com/pytorch/pytorch/pull/132530#issuecomment-2297001423))
2024-08-19 16:47:15 +00:00
Justin Chu
5fab35d77c [ONNX] New export logic leveraging ExportedProgram and ONNX IR (#132530)
1/n PR to

- Move code from torch-onnx from commit 395495e566 into torch.onnx and fixes imports.
- Integrate the new export logic with the torch.onnx.export API and include basic set of tests.
- Refactor the API for the change.
- Improve documentation.

Next PRs will be more tests and docs.

Fix https://github.com/pytorch/pytorch/issues/129277
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132530
Approved by: https://github.com/titaiwangms, https://github.com/malfet
2024-08-19 14:01:07 +00:00
Edward Z. Yang
1f66487c69 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
2024-08-08 23:07:23 +00:00
PyTorch MergeBot
d1f73fd844 Revert "[BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)"
This reverts commit 902c6f3a19.

Reverted https://github.com/pytorch/pytorch/pull/132770 on behalf of https://github.com/ezyang due to Removed API was recommitted ([comment](https://github.com/pytorch/pytorch/pull/132770#issuecomment-2275749689))
2024-08-08 12:54:34 +00:00
Edward Z. Yang
902c6f3a19 [BE] Reroute all uses of proxy_tensor.maybe_disable_fake_tensor_mode to fake_tensor.unset_fake_temporarily (#132770)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132770
Approved by: https://github.com/bdhirsh
ghstack dependencies: #132674, #132675, #132421, #132062, #132767, #132769
2024-08-08 12:03:25 +00:00