This change addresses confusing error messages users encounter when using the ONNX exporter with default settings. Previously, `fallback=True` was the default, which would attempt to fall back to the TorchScript exporter when the dynamo path failed, leading to mixed error messages that obscured the actual issues.
## Problem
When `fallback=True` by default:
- Users get confusing error messages mixing dynamo and TorchScript export failures
- Error messages tell users to provide the `f` argument unnecessarily
- Dynamo error messages get flushed with TorchScript errors when both paths fail
- Users expecting the dynamo path get unexpected fallback behavior
## Solution
Changed the default from `fallback=True` to `fallback=False` in both:
- `torch.onnx.export()` function
- `torch.onnx._internal.exporter._compat.export_compat()` function
## Impact
**Before:**
```python
# Would fallback to TorchScript on dynamo failure, causing mixed error messages
torch.onnx.export(model, args)
```
**After:**
```python
# Clean dynamo-only errors by default
torch.onnx.export(model, args)
# Advanced users can still opt-in to fallback behavior
torch.onnx.export(model, args, fallback=True)
```
Fixes#162697
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162726
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
Refactor torchscript based exporter logic to move them to a single (private) location for better code management. Original public module and method apis are preserved.
- Updated module paths in `torch/csrc/autograd/python_function.cpp` accordingly
- Removed `check_onnx_broadcast` from `torch/autograd/_functions/utils.py` because it is private&unused
@albanD / @soulitzer could you review changes in `torch/csrc/autograd/python_function.cpp` and
`torch/autograd/_functions/utils.py`? Thanks!
## BC Breaking
- **Deprecated members in `torch.onnx.verification` are removed**
Differential Revision: [D81236421](https://our.internmc.facebook.com/intern/diff/D81236421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161323
Approved by: https://github.com/titaiwangms, https://github.com/angelayi
Remove enable_fake_mode and exporter_legacy entirely. Even though this is bc breaking, `enable_fake_mode` is no longer compatible with the latest version of transformers, and so it is no longer useful.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161222
Approved by: https://github.com/titaiwangms
Beginning of process for 3.14 bringup.
State of things from this PR:
- Nothing too scary looking from the Dynamo CPython side, nothing we heavily rely on seems to be missing @williamwen42
- The existing check that makes torch.compile() nicely fail is working as expected. So all these empty functions shouldn't cause any weirdness.
- The `__module__` update changes look suspicious, we should investigate what is the reason and impact of that, in particular for our public API checking @jbschlosser
- Leaving the weakref.py thread safety change as a follow up to keep this a bit simpler. I vendored the whole struct in the meantime FYI @ezyang
EDIT: The `__module__` change is even more cursed than I though due to changes to Union and Optional type where the `__module__` field cannot be changed anymore. See https://github.com/python/cpython/issues/132139 for details.
For now, I'm just skipping the `__module__` setting for 3.14 which will trip the public API checks. Will revisit once I have a final answer on the cpython issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158184
Approved by: https://github.com/msaroufim
Previous to this PR, torch.onnx.export(..., dynamo=True, veriy=True, report=True) does not support symbolic arguments. Such examples are like follwing:
```python
class M(torch.nn.Module):
def forward(self, a, x):
return a + torch.tensor(1) + x
op = torch.onnx.export(M(), (1, torch.ones(2)),
dynamic_shapes=(torch.export.Dim.DYNAMIC, {0: torch.export.Dim.DYNAMIC}),
dynamo=True, report=True)
```
symbolic arguments are like constant arguments that they don't have tensor_meta wither. Besides, torch.export.export supports model inputs having constants, which is different from the legacy issue: https://github.com/pytorch/pytorch/issues/99534 where we tried to get the FX directly from dynamo export. Thus, `_remove_non_tensor` is deleted from args processing.
NOTE: If the ConstantArugment shows up in exported_program, it was kept to align the length of inputs to nn.Module, but it's irrelevant to the model graph, hwich is why in ONNX model the input is omitted.
The test `test_constant_argument_user_input_is_omitted_in_onnx_graph` needs #157719
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157734
Approved by: https://github.com/justinchuby
~~The PR: https://github.com/pytorch/pytorch/pull/152478 did not respect the release policy that the deprecation should happen after the deprecation message has been set for 2 releases. This PR postpone 2.8 to the rightful version 2.10.~~
~~NOTE: "as early as" 2.10 shall give ONNX users more time to adapt and provide feedback.~~
To follow the upcoming torchscript deprecation, `torch.onnx.export` expects to switch dynamo=True (also turn on fallback=True for bc) on torch 2.9.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155580
Approved by: https://github.com/justinchuby, https://github.com/tugsbayasgalan
Create draft_export strategy.
The strategy is added before jit and after strict=True, as the third fallback. Since it is specializing tensors it should not be less robust than the jit trace strategy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147529
Approved by: https://github.com/titaiwangms
In the old exporter we allow users to define a symbolic() method to bypass JIT tracing for a block of logic. We can allow users to do similar things by creating symbolic ops at export.
This PR implements `torch.onnx.ops.symbolic` and `torch.onnx.ops.symbolic_multi_out` to allow users to create onnx nodes symbolically with pt2 & fx. The custom pytorch ops were designed such that the attributes are encoded to be part of a valid fx op. Users provide shape and dtype for the meta function to produce the currect fake tensor during export.
An example is

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148905
Approved by: https://github.com/titaiwangms
Follow up on https://github.com/pytorch/pytorch/pull/146923 to address comments.
This pull request includes updates to the `torch/onnx` module, focusing on deprecations and documentation improvements. The most important changes involve moving version change notes within the `export` function, updating deprecation messages, and removing example code in the `dynamo_export` function.
Documentation and Deprecation Updates:
* [`torch/onnx/__init__.py`](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L172-L184): Moved version change notes to the correct location within the `export` function's docstring. Updated the deprecation note for the `dynamo_export` function to version 2.7 and removed example code from its docstring. [[1]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L172-L184) [[2]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553R349-R357) [[3]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L434-R430) [[4]](diffhunk://#diff-c3c8c09b65c1235ca4494633c6a0aab2761a11a7653ddaf9f874bbcd91e15553L445-L475)
* [`torch/onnx/utils.py`](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL111-R114): Enhanced deprecation messages for several functions (`select_model_mode_for_export`, `disable_apex_o2_state_dict_hook`, `setup_onnx_logging`, `unconvertible_ops`) to provide clearer guidance on their removal and suggest copying logic if needed. [[1]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL111-R114) [[2]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL148-R151) [[3]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL166-R173) [[4]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL1180-R1189) [[5]](diffhunk://#diff-849a5778e2dcf7f36587967273cee0bf20642e35bf4c79405111ea3417c3fb3cL1190-R1199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147005
Approved by: https://github.com/titaiwangms
Adjust and add deprecation messages to torch.onnx utilities and verification methods because they are only related to torch script and are obsolete.
Removed unused `_exporter_states.py` and removed the internal deprecation module in favor of the typing_extensions deprecated decorator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146639
Approved by: https://github.com/titaiwangms
Reland #146003
Deprecation of `torch.onnx.dynamo_export`:
* [`torch/onnx/_internal/_exporter_legacy.py`]: Added deprecation warnings to the `OnnxRegistry`, `ExportOptions`, `ONNXRuntimeOptions`, and `dynamo_export` functions, indicating that `torch.onnx.dynamo_export` is deprecated since version 2.6.0 and should be replaced with `torch.onnx.export(..., dynamo=True)`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146425
Approved by: https://github.com/titaiwangms, https://github.com/atalman
Deprecation of `torch.onnx.dynamo_export`:
* [`torch/onnx/_internal/_exporter_legacy.py`](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR83-R86): Added deprecation warnings to the `OnnxRegistry`, `ExportOptions`, `ONNXRuntimeOptions`, and `dynamo_export` functions, indicating that `torch.onnx.dynamo_export` is deprecated since version 2.6.0 and should be replaced with `torch.onnx.export(..., dynamo=True)`. [[1]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR83-R86) [[2]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR231-R234) [[3]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR442-R445) [[4]](diffhunk://#diff-4d1eb96fe68ea904dcd1f8211318b9ff882dbfe4c3cb725ffc164b6c5a58b74cR700-R703)
This PR also removed the `**_` kwarg on onnx.export such that users get an error when they supply an unexpected augument.
Updated to emit deprecation warning because it is more appropriate: https://docs.python.org/3/library/exceptions.html#DeprecationWarning
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146003
Approved by: https://github.com/titaiwangms
Fixes#139320
### Summary:
#### (1) Add `_rename_dynamic_shapes_with_model_inputs` for dynamic_shapes to play along with input_names
* Use model forward signature to rename dynamic_shapes when dynamic_shapes is not nested and dynamic_shapes is directly using the customized name. This solves the issue that torch.export.export expects dynamic_shapes only uses the model input names.
* If the dynamic_shapes is nested, we do nothing.
#### (2) Add `_from_dynamic_shapes_to_dynamic_axes` for fallback
* We flatten dynamic_shapes with leaf defined _pytree.tree_leaves()
~~* If a dynamic_shapes is not nested, and defined in dict. We can use the key as the input_names, since it should be renamed by `_rename_dynamic_shapes_with_model_inputs` already.~~
* If a dynamic_shapes is provided, input_names is required to assign the names, because dynamic_axes needs it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139532
Approved by: https://github.com/justinchuby
The ONNX custom ops registration API.
## Design
1. Create a "custom_translation_table: dict[Callable, Sequence[Callable] | Callable" parameter for specifying extra functions
2. Use a callable as the key to support all possible call_function targets in the fx graph
3. Allow a callable or a Sequence of callables as values.
- When there is a single callable, it is the translation function for the op
- When there is a Sequence of callable, the exporter's dispatcher will dispatch to these callables in order based on input dtypes.
- The translation functions can be a plain python function that calls onnxscript ops (traced), or an onnxscript function.
- Complex input support: We create special type annotations for annotating real representations of complex inputs, which are needed to handle complex computation in the ONNX graph, as we don't have any ops in ONNX that handle complex inputs. The dispatcher will have knowledge of these newly created type annotations and dispatch correctly. The complex functions will be in the same overload pool as the real functions.
```py
torch.onnx.export(dynamo=True,
custom_translation_table = {
torch.ops.aten.add: [overload1, overload2],
torch.sym_not: sym_not_onnx,
})
```
Support for functions that handles complex inputs will be in separate PRs.
fixes https://github.com/pytorch/pytorch/issues/138391
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135403
Approved by: https://github.com/titaiwangms
Refactor exporter errors to combine old errors and new errors for API consistency.
This PR also
1. Removes the `_C._check_onnx_proto(proto)` call in the old exporter. We don't need the ONNX checker because it is limited.
2. Removes the `OnnxExporterError` defined in the dynamo module. This class unnecessarily stores the onnx program object, making it very bulky. Instead, we revert to use the plain OnnxExporterError defined in the `errors` module and use it as the base class for all errors.
3. Continues to expose `OnnxExporterError` in `torch.onnx` and the rest of the errors in `torch.onnx.errors`.
4. Removes the `CheckerError` and `InvalidExportOptionsError` from `torch.onnx`. This is BC breaking but should have low impact.
5. I did not rename existing errors out of compatibility considerations, even though `ExporterError` would have been more succinct.
Fixes https://github.com/pytorch/pytorch/issues/135125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135180
Approved by: https://github.com/titaiwangms