Options to address the "undocumented python objects":
1. Reference the functions in the .rst via the torch.nn.modules namespace. Note that this changes the generated doc filenames / locations for most of these functions!
2. [Not an option] Monkeypatch `__module__` for these objects (broke several tests in CI due to `inspect.findsource` failing after this change)
3. Update the .rst files to also document the torch.nn.modules forms of these functions, duplicating docs.
#### [this is the docs page added](https://docs-preview.pytorch.org/pytorch/pytorch/158491/nn.aliases.html)
This PR takes option 3 by adding an rst page nn.aliases that documents the aliases in nested namespaces, removing all the torch.nn.modules.* entries from the coverage skiplist except
- NLLLoss2d (deprecated)
- Container (deprecated)
- CrossMapLRN2d (what is this?)
- NonDynamicallyQuantizableLinear
This mostly required adding docstrings to `forward`, `extra_repr` and `reset_parameters`. Since forward arguments are already part of the module docstrings I just added a very basic docstring.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158491
Approved by: https://github.com/janeyx99
This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
Summary:
Also move the ignores for imports to the bottom in `mypy.ini`, those are much less interesting - start with the stuff people want to work on.
Second commit tests the instructions: remove an ignore, fix the issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37594
Differential Revision: D21434858
Pulled By: ezyang
fbshipit-source-id: 4f1a6868cdb4cb59d072bcf105f48c3a5ba3ff98
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36815
Pytorch does not have native channel shuffle op.
This diff adds that for both fp and quantized tensors.
For FP implementation is inefficient one. For quantized there is a native
QNNPACK op for this.
ghstack-source-id: 103267234
Test Plan:
buck run caffe2/test:quantization --
quantization.test_quantized.TestQuantizedOps.test_channel_shuffle
X86 implementation for QNNPACK is sse2 so this may not be the most efficient
for x86.
Reviewed By: dreiss
Differential Revision: D21093841
fbshipit-source-id: 5282945f352df43fdffaa8544fe34dba99a5b97e