Commit Graph

44 Commits

Author SHA1 Message Date
zeshengzong
ed03492238 Add check nested_tensor_from_jagged param jagged_dim >= 1 (#157770)
Fixes #157404

## Test Result

```bash
pytest test/test_nestedtensor.py

...............................................s..........ssssss.................................................................................................s.s..sssss..s...ss............................................................. [ 44%]
...........................................................sssss....sss...s.........ss....s....sss.........s.sss...s..s......s............s.sss.ss...............s.....................s....s......................s.s.....s....s..s..ssssssssss [ 59%]
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss..ssssss.ssssssssssssssssssssssssssssssssssssssssssssssssssssssssss.ssssssss...............................s........................................... [ 74%]
.......sss...................................................................................................................................................................................................................................... [ 89%]
....sss..........................................................................................................................................................                                                                                [100%]

==================================================================================================== 1317 passed, 258 skipped in 2504.27s (0:41:44) ====================================================================================================
```

![image](https://github.com/user-attachments/assets/dcc8e46d-b88f-4580-b4ad-0999bad33ec9)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157770
Approved by: https://github.com/soulitzer

Co-authored-by: Jeffrey Wan <soulitzer@gmail.com>
2025-07-10 00:34:39 +00:00
Aaron Orenstein
db4ce78d46 PEP585: More UP006 fixes (#146392)
This should be the final PR before we can enable RUFF UP006.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146392
Approved by: https://github.com/justinchuby, https://github.com/albanD, https://github.com/Skylion007
2025-02-20 06:18:13 +00:00
Joel Schlosser
b2a0feac85 Update OSS nested tensor docs to focus on NJT (#145402)
Updated nested tensor docs to be NJT-centric (instead of NST-centric). They now include:
* High-level description of NST vs. NJT + a recommendation to use NJT
* General NJT construction / usage
* torch.compile() integration w/ dynamic shapes
* Common errors and how to fix them
* Contribution guide
* Data layout / shape information (with diagram)
* Links to more extensive tutorials involving Transformers / SDPA / FlexAttention

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145402
Approved by: https://github.com/soulitzer
2025-01-25 04:08:19 +00:00
Aaron Orenstein
805c4b597a PEP585 update - torch/_higher_order_ops torch/_subclasses torch/backends torch/compiler torch/cuda torch/masked torch/mtia torch/nested (#145202)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145202
Approved by: https://github.com/bobrenjc93
2025-01-20 22:37:26 +00:00
Xuehai Pan
5c4545f857 [BE][Easy] enable PYFMT for torch/[a-s]*/ (#138447)
Reproduce command:

```bash
ghstack checkout https://github.com/pytorch/pytorch/pull/138447
git checkout HEAD~1 torch/
lintrunner -a --take "PYFMT" --all-files
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138447
Approved by: https://github.com/ezyang
2024-12-23 14:04:00 +00:00
Mikayla Gawarecki
b63a84804c Allow NJT by default for weights_only torch.load (take 2) (#140739)
Per discussion with @malfet, only allow weights_only unpickler to load NJT if `torch.nested` and `torch._dynamo`  are imported

(this is slightly weird as technically `torch.nested` is actually imported by default and `torch._dynamo.decorators._DimRange` is actually what needs to be imported)

we can't import this from `torch.nested` as this would
- undo dynamo lazy import
- cause circular import

===========================
Redo of https://github.com/pytorch/pytorch/pull/140304 caused issues as `torch.nested._internal.foo` needs to be imported, which causes issues like

```python
torch/_weights_only_unpickler.py", line 339, in load
    if full_path in _get_allowed_globals():
torch/_weights_only_unpickler.py", line 188, in _get_allowed_globals
    torch.nested._internal.nested_tensor.NestedTensor
AttributeError: module 'torch.nested' has no attribute '_internal'
```

**This likely wasn't caught in our CI because imports are global during unit tests(?), so we use subprocess to properly test this time**

Differential Revision: [D65961691](https://our.internmc.facebook.com/intern/diff/D65961691)

@jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140739
Approved by: https://github.com/malfet
2024-11-19 02:44:53 +00:00
krzysztofjordan
2e1830c7c8 Implement 2D version of masked_select for nestedtensors (#133889)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133889
Approved by: https://github.com/soulitzer
2024-08-20 21:46:32 +00:00
PyTorch MergeBot
656465fc77 Revert "Conversions between strided and jagged layouts for Nested Tensors (#115749)"
This reverts commit ed97fb77f9.

Reverted https://github.com/pytorch/pytorch/pull/115749 on behalf of https://github.com/izaitsevfb due to fails internal jobs, see [S440348](https://www.internalfb.com/sevmanager/view/440348) ([comment](https://github.com/pytorch/pytorch/pull/115749#issuecomment-2285051164))
2024-08-12 23:14:19 +00:00
Antoni Viros
ed97fb77f9 Conversions between strided and jagged layouts for Nested Tensors (#115749)
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
2024-08-07 14:18:53 +00:00
PyTorch MergeBot
38674bcb45 Revert "Conversions between strided and jagged layouts for Nested Tensors (#115749)"
This reverts commit eca0cb0fbe.

Reverted https://github.com/pytorch/pytorch/pull/115749 on behalf of https://github.com/izaitsevfb due to breaks test_overrides.py::TestTorchFunctionWarning::test_warn_on_invalid_torch_function_tensor_subclass ([comment](https://github.com/pytorch/pytorch/pull/115749#issuecomment-2270213988))
2024-08-06 01:55:41 +00:00
Antoni Viros
eca0cb0fbe Conversions between strided and jagged layouts for Nested Tensors (#115749)
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
2024-08-05 23:45:48 +00:00
David Berard
d548417d95 [NJT] throw an exception if nested_tensor_from_jagged is fx-traced without being fx.wrapped (#130702)
The NJT constructor can't be fx-traced safely due to the dummy nt used:

774ca93fd2/torch/nested/_internal/nested_tensor.py (L501-L508)

The error doesn't appear immediately, but appears if you try to move a module with an fx-traced NJT constructor onto a different device, or try to serialize it. Let's throw an error if we try to fx-trace the NJT constructor so users know to wrap the call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130702
Approved by: https://github.com/jbschlosser, https://github.com/soulitzer
2024-07-16 19:21:10 +00:00
Joel Schlosser
09b1b113f5 Cache min / max seq len for torch.nested.as_nested_tensor(t) (#130766)
For the `torch.nested.as_nested_tensor(t)` constructor, computing min / max seq len is trivial since the sequence lengths are all the same. Might as well cache them during construction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130766
Approved by: https://github.com/YuqingJ, https://github.com/soulitzer
2024-07-16 18:32:47 +00:00
Joel Schlosser
00335a27b4 Accept min / max sequence length in nested_tensor_from_jagged() constructor (#130175)
This PR updates the public API for NJT construction `torch.nested.nested_tensor_from_jagged()` to accept values for min / max sequence length. It's useful to provide these ahead of time to avoid GPU -> CPU syncs from on-demand computation later on.

NB: The test changes are extensive because I reworked the existing `_validate_nt()` helper function used throughout our NJT construction tests to verify more (specifically: expected cached min / max seq len and contiguity).

API design question: should we additionally provide an option to compute these from `offsets` at construction time? I can think of three possible cases during construction:
1. Min / max seq len has already been obtained from *somewhere* (manual calculation, static values, etc.) and they should be used in the cache
2. Min / max seq len should be computed immediately at construction time for use in the cache (ideally, the caller wouldn't have to do this computation manually)
3. Min / max seq len are not needed at all (i.e. SDPA isn't ever called) and computation should be skipped
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130175
Approved by: https://github.com/davidberard98, https://github.com/soulitzer
2024-07-08 22:14:52 +00:00
Joel Schlosser
7192ee0735 Default to input tensor device for as_nested_tensor(t) (#130050)
Fixes #129647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130050
Approved by: https://github.com/YuqingJ
2024-07-05 17:50:08 +00:00
PyTorch MergeBot
fa6c0fe3e4 Revert "Conversions between strided and jagged layouts for Nested Tensors (#115749)"
This reverts commit 9450e198aa.

Reverted https://github.com/pytorch/pytorch/pull/115749 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/115749#issuecomment-2197790226))
2024-06-29 00:16:47 +00:00
Antoni Viros
9450e198aa Conversions between strided and jagged layouts for Nested Tensors (#115749)
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
2024-06-27 03:41:28 +00:00
Aaron Orenstein
038b927590 Flip default value for mypy disallow_untyped_defs [7/11] (#127844)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127844
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843
2024-06-08 18:49:45 +00:00
Aaron Orenstein
a8574a9719 Fix global flake8 issues (#124771)
Prior to this `lintrunner --all-files --take FLAKE8` failed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124771
Approved by: https://github.com/Skylion007
ghstack dependencies: #124428
2024-04-26 15:35:53 +00:00
PyTorch MergeBot
1ac60484c1 Revert "Fix global flake8 issues (#124771)"
This reverts commit f01275934b.

Reverted https://github.com/pytorch/pytorch/pull/124771 on behalf of https://github.com/jeanschmidt due to Unfortunately, I needed to revert #123735 and this one depends on it. So please check if there are no merge conflicts or breakages and feel free to merge this PR again ([comment](https://github.com/pytorch/pytorch/pull/124428#issuecomment-2078699836))
2024-04-26 06:15:17 +00:00
Aaron Orenstein
f01275934b Fix global flake8 issues (#124771)
Prior to this `lintrunner --all-files --take FLAKE8` failed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124771
Approved by: https://github.com/Skylion007
ghstack dependencies: #124428
2024-04-25 14:25:00 +00:00
Joel Schlosser
e6986e4317 Public API for NJT construction from jagged components (#121518)
This PR introduces `torch.nested.nested_tensor_from_jagged(values, offsets=None, lengths=None, jagged_dim=1)` (bikeshedding welcome). This is intended to be the main entrypoint for getting an NJT from the `(values, offsets, lengths)` components. The returned NJT is a view of the `values` component.

Note that `torch.nested.nested_tensor()` / `torch.nested.as_nested_tensor()` already exist for constructing an NJT from a list of tensors.

TODO:
* Some doc formatting; suggestions welcome there
* Tests / examples using `jagged_dim != 1`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121518
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #113279, #113280
2024-03-22 14:48:22 +00:00
Joel Schlosser
470b44c048 Support for torch.nested.as_nested_tensor(t) (#113280)
This PR adds support for tensor inputs to `as_nested_tensor()`. The tensor is treated as a batch of consistently-sized constituents. It utilizes `_nested_view_from_values_offsets()` to return a real view that allows for propagating gradients into inputs.
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113280
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #113279
2024-03-22 02:12:37 +00:00
Joel Schlosser
cd6bfc7965 Proper view support for jagged layout NestedTensor (#113279)
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
    * `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
    * This ops is implemented on the Python side using torch.library so we can return a subclass instance
    * `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
    * The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
    * `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
    * `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
    * Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)

With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.

Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
2024-03-22 02:12:36 +00:00
PyTorch MergeBot
224beecee6 Revert "Proper view support for jagged layout NestedTensor (#113279)"
This reverts commit 5855c490f0.

Reverted https://github.com/pytorch/pytorch/pull/113279 on behalf of https://github.com/jbschlosser due to Need to fix BC thing ([comment](https://github.com/pytorch/pytorch/pull/113279#issuecomment-2013899762))
2024-03-21 22:03:01 +00:00
PyTorch MergeBot
12e7602cf9 Revert "Support for torch.nested.as_nested_tensor(t) (#113280)"
This reverts commit 17c9c70265.

Reverted https://github.com/pytorch/pytorch/pull/113280 on behalf of https://github.com/jbschlosser due to Need to fix BC thing ([comment](https://github.com/pytorch/pytorch/pull/113280#issuecomment-2013893099))
2024-03-21 22:00:44 +00:00
PyTorch MergeBot
816db3bd29 Revert "Public API for NJT construction from jagged components (#121518)"
This reverts commit d4dff9cf5e.

Reverted https://github.com/pytorch/pytorch/pull/121518 on behalf of https://github.com/jbschlosser due to Need to fix BC thing ([comment](https://github.com/pytorch/pytorch/pull/121518#issuecomment-2013879641))
2024-03-21 21:56:29 +00:00
Joel Schlosser
d4dff9cf5e Public API for NJT construction from jagged components (#121518)
This PR introduces `torch.nested.nested_tensor_from_jagged(values, offsets=None, lengths=None, jagged_dim=1)` (bikeshedding welcome). This is intended to be the main entrypoint for getting an NJT from the `(values, offsets, lengths)` components. The returned NJT is a view of the `values` component.

Note that `torch.nested.nested_tensor()` / `torch.nested.as_nested_tensor()` already exist for constructing an NJT from a list of tensors.

TODO:
* Some doc formatting; suggestions welcome there
* Tests / examples using `jagged_dim != 1`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121518
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #113280
2024-03-21 04:14:17 +00:00
Joel Schlosser
17c9c70265 Support for torch.nested.as_nested_tensor(t) (#113280)
This PR adds support for tensor inputs to `as_nested_tensor()`. The tensor is treated as a batch of consistently-sized constituents. It utilizes `_nested_view_from_values_offsets()` to return a real view that allows for propagating gradients into inputs.
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113280
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2024-03-21 04:13:55 +00:00
Joel Schlosser
5855c490f0 Proper view support for jagged layout NestedTensor (#113279)
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
    * `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
    * This ops is implemented on the Python side using torch.library so we can return a subclass instance
    * `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
    * The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
    * `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
    * `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
    * Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)

With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.

Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
2024-03-20 23:45:34 +00:00
albanD
24133e44b1 Fix return type hint for list types (#118238)
All single element list types are `Tensor[]` so they will always be Tuple.
I don't know of any way to easily access the pyi type and compare that to a real run so no testing here :(
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118238
Approved by: https://github.com/ezyang
2024-01-25 23:35:20 +00:00
Antoni Viros
1aece432ba Implement narrow from a regular tensor to jagged tensor (#112770)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112770
Approved by: https://github.com/cpuhrsch
2023-11-13 19:09:59 +00:00
soulitzer
c2084da14a [NT] Backward support for broadcasting binary ops (#112519)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112519
Approved by: https://github.com/jbschlosser
ghstack dependencies: #113031
2023-11-07 00:03:21 +00:00
Joel Schlosser
2225e6361d Support for as_nested_tensor() with jagged layout + fixed nested_tensor() semantics (#112304)
This PR:
* Adds support for the `layout` kwarg to `torch.nested.as_nested_tensor()`
* Fixes `torch.nested.nested_tensor()`
    * It should accept a list of lists of scalars
    * It should not preserve autograd history
* Adds extensive testing for these two functions

Semantics for the two functions follow those of the strided layout:
* `torch.nested.nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **with no autograd history**
    * `tensor_list` can be a list of Tensors or list of lists of scalars
* `torch.nested.as_nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **preserving autograd history of `tensor_list`**
    * `tensor_list` must be a list of Tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112304
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-10-28 02:34:27 +00:00
Jesse Cai
4c01686027 Public API for constructing NT with jagged layout from tensor list (#111078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111078
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #109123
2023-10-13 03:27:41 +00:00
Aaron Gokaslan
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
rusty1s
19706356b5 Fix TorchScript support in as_nested_tensor (#97960)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97960
Approved by: https://github.com/cpuhrsch
2023-03-30 18:55:26 +00:00
Mikayla Gawarecki
ec61951f07 Fix inaccuracy in nt constructor documentation + broken rendering (#89152)
Rendering was broken and docstring seemed to be inaccurate

![Screen Shot 2022-11-16 at 2 16 28 PM](https://user-images.githubusercontent.com/35276741/202273588-a2da5b7b-1a6d-46bb-a74e-c0de9a0fd064.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89152
Approved by: https://github.com/cpuhrsch
2022-11-16 22:32:46 +00:00
Antoni Viros i Martin
c77368d416 Implement a constructor for nested_tensor that is similar to torch.tensor() (#88213)
Summary: This diff merges both previous implementations of constructors for nested tensors, the one from lists of tensors and the one with arbitrary python lists, adn implements it in pytorch core so no extensions are needed to construct NT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88213
Approved by: https://github.com/cpuhrsch
2022-11-08 00:03:18 +00:00
Frankie Robertson
afc9963865 Fix path to nested_tensor in example (#86891)
This appears to be a typo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86891
Approved by: https://github.com/H-Huang
2022-10-13 17:42:32 +00:00
Mikayla Gawarecki
a77f2a95a7 Improve NestedTensor documentation (#85186)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85186
Approved by: https://github.com/cpuhrsch
2022-10-12 22:03:04 +00:00
Mikayla Gawarecki
afaee00fec Add python nested_tensor and as_nested_tensor constructors in torch.nested (#85593)
Remove `torch.nested_tensor` which has erroneous behavior wrt gradients (could be either leaf or not leaf). Introduce `torch.nested.nested_tensor` and `torch.nested.as_nested_tensor` in the vein of `torch.tensor` and `torch.as_tensor`. Done in nested `__init__.py` for now but can move to pybind in future (when we want to load from numpy/nested lists ).

Discussed offline with @cpuhrsch and pybind constructor (https://github.com/pytorch/pytorch/pull/85536) was more gnarly than expected, so we can move to that when we do need loading from numpy etc.

Differential Revision: [D39806622](https://our.internmc.facebook.com/intern/diff/D39806622)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85593
Approved by: https://github.com/drisspg, https://github.com/cpuhrsch
2022-09-28 20:15:02 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Christian Puhrsch
484c0de670 Minimal NestedTensor (#72881)
Summary:
This PR adds a minimal version of a NestedTensor. It introduces the general harness future development can be built around.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72881

Reviewed By: albanD

Differential Revision: D34259177

Pulled By: cpuhrsch

fbshipit-source-id: 0245c36f603424e20f3b09651043c207f526d760
(cherry picked from commit 10764e8d427f29b364567e4cbc86ed73c3933158)
2022-03-02 16:31:51 +00:00