Fixes#144196
Extends #144106 and #144110
## Open Problems:
- [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769
# Notes
- `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped.
- `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402
- `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218
- `independent.py`: made `Independent` a generic class of its base distribution.
- `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2].
- `relaxed_bernoulli.py`: added class-level type hint for `base_dist`.
- `relaxed_categorical.py`: added class-level type hint for `base_dist`.
- ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401
- ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400
- `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`.
- `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1].
- `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`.
- skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`.
## Remark
`TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`.
```python
import torch
from torch.distributions import *
b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1))
t = StickBreakingTransform()
d1 = TransformedDistribution(b1, t)
d2 = TransformedDistribution(b2, t)
print(d1.base_dist) # Independent with 1 dimension
print(d2.base_dist) # MultivariateNormal
```
One could consider changing this to `if reinterpreted_batch_ndims > 1:`.
[^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places
[^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144197
Approved by: https://github.com/malfet
Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
Fixes#76772, #144196
Extends #144106
- added type annotations to `lazy_property`.
- added type annotation to all `@property` and `@lazy_property` inside `torch.distributions` module.
- added simply type-check unit test to ensure type inference is working.
- replaced deprecated annotations like `typing.List` with the corresponding counterpart.
- simplified `torch.Tensor` hints with plain `Tensor`, otherwise signatures can become very verbose.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144110
Approved by: https://github.com/Skylion007
This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
This PR fixes#69466 and introduces some other minor changes. Tests are somewhat more involved because a reference implementation in `scipy` is not available; tests proceed differently for discrete and continuous distributions.
For continuous distributions, we evaluate the gradient of the `log_prob` at the mode. Tests pass if the gradient is zero OR (the mode is at the boundary of the support of the distribution AND the `log_prob` decreases as we move away from the boundary to the interior of the support).
For discrete distributions, the notion of a gradient is not well defined. We thus "look" ahead and behind one step (e.g. if the mode of a Poisson distribution is 9, we consider 8 and 10). If the step ahead/behind is still within the support of the distribution, we assert that the `log_prob` is smaller than at the mode.
For one-hot encoded distributions (currently just `OneHotCategorical`), we evaluate the underlying mode (i.e. encoded as an integral tensor), "advance" by one label to get another sample that should have lower probability using `other = (mode + 1) % event_size` and re-encode as one-hot. The resultant `other` sample should have lower probability than the mode.
Furthermore, Gamma, half Cauchy, and half normal distributions have their support changed from positive to nonnegative. This change is necessary because the mode of the "half" distributions is zero, and the mode of the gamma distribution is zero for `concentration <= 1`.
cc @fritzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76690
Approved by: https://github.com/neerajprad
Summary:
There is a very common error when writing docs: One forgets to write a matching `` ` ``, and something like ``:attr:`x`` is rendered in the docs. This PR fixes most (all?) of these errors (and a few others).
I found these running ``grep -r ">[^#<][^<]*\`"`` on the `docs/build/html/generated` folder. The regex finds an HTML tag that does not start with `#` (as python comments in example code may contain backticks) and that contains a backtick in the rendered HTML.
This regex has not given any false positive in the current codebase, so I am inclined to suggest that we should add this check to the CI. Would this be possible / reasonable / easy to do malfet ?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60474
Reviewed By: mrshenli
Differential Revision: D29309633
Pulled By: albanD
fbshipit-source-id: 9621e0e9f87590cea060dd084fa367442b6bd046
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50378.
Additionally, this has some minor fixes:
- [x] Fix mean for half-cauchy to return `inf` instead of `nan`.
- [x] Fix constraints/support for the relaxed categorical distribution.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51053
Reviewed By: heitorschueroff
Differential Revision: D26077966
Pulled By: neerajprad
fbshipit-source-id: ca0213baa9bbdbc661aebbb901ab5e7fded38a5f
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50496
Fixes https://github.com/pytorch/pytorch/issues/34859
Fixes https://github.com/pytorch/pytorch/issues/21596
This fixes many bugs involving `TransformedDistribution` and `ComposeTransform` when the component transforms changed their event shapes. Part of the fix is to introduce an `IndependentTransform` analogous to `distributions.Independent` and `constraints.independent`, and to introduce methods `Transform.forward_shape()` and `.inverse_shape()`. I have followed fehiepsi's suggestion and replaced `.input_event_dim` -> `.domain.event_dim` and `.output_event_dim` -> `.codomain.event_dim`. This allows us to deprecate `.event_dim` as an attribute.
## Summary of changes
- Fixes `TransformDistribution` and `ComposeTransform` shape errors.
- Fixes a behavior bug in `LogisticNormal`.
- Fixes `kl_divergence(TransformedDistribution, TransformedDistribution)`
- Adds methods `Transform.forward_shape()`, `.inverse_shape()` which are required for correct shape computations in `TransformedDistribution` and `ComposeTransform`.
- Adds an `IndependentTransform`.
- Adds a `ReshapeTransform` which is invaluable in testing shape logic in `ComposeTransform` and `TransformedDistribution` and which will be used by stefanwebb flowtorch.
- Fixes incorrect default values in `constraints.dependent.event_dim`.
- Documents the `.event_dim` and `.is_discrete` attributes.
## Changes planned for follow-up PRs
- Memoize `constraints.dependent_property` as we do with `lazy_property`, since we now consult those properties much more often.
## Tested
- [x] added a test for `Dist.support` vs `Dist(**params).support` to ensure static and dynamic attributes agree.
- [x] refactoring is covered by existing tests
- [x] add test cases for `ReshapedTransform`
- [x] add a test for `TransformedDistribution` on a wide grid of input shapes
- [x] added a regression test for https://github.com/pytorch/pytorch/issues/34859
cc fehiepsi feynmanliang stefanwebb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50581
Reviewed By: ezyang, glaringlee, jpchen
Differential Revision: D26024247
Pulled By: neerajprad
fbshipit-source-id: f0b9a296f780ff49659b132409e11a29985dde9b
Summary:
Addresses https://github.com/pytorch/pytorch/issues/50496
This fixes a number of inconsistencies in torch.distributions.constraints as used for parameters and supports of probability distributions.
- Adds a `constraints.independent` and replaces `real_vector` with `independent(real, 1)`. (this pattern has long been used in Pyro)
- Adds an `.event_dim` attribute to all constraints.
- Tests that `constraint.check(data)` has the correct shape. (Previously the shapes were incorrect).
- Adds machinery to set static `.is_discrete` and `.event_dim` for `constraints.dependent`.
- Fixes constraints for a number of distributions.
## Tested
- added a new check to the constraints tests
- added a new check for `.event_dim`
cc fehiepsi feynmanliang stefanwebb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50547
Reviewed By: VitalyFedyunin
Differential Revision: D25918330
Pulled By: neerajprad
fbshipit-source-id: a648c3de3e8704f70f445c0f1c39f2593c8c74db
Summary:
Clarified that the `Categorical` distribution will actually accept input of any arbitrary tensor shape, not just 1D and 2D tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45804
Reviewed By: dzhulgakov
Differential Revision: D24125415
Pulled By: VitalyFedyunin
fbshipit-source-id: 5fa1f07911bd85e172199b28d79763428db3a0f4
Summary:
Fixes https://github.com/pytorch/pytorch/issues/34714 (using the discussed solution). Thanks to jjabo for flagging and suggesting this.
Instead of expanding `probs` to prepend `sample_shape`, it is better to use the `num_samples` argument to `torch.multinomial` instead, which is faster and consumes lesser memory.
Existing tests should cover this. I have profiled this on different inputs and the change results in faster `.sample` (e.g. 100X faster on the example in the issue), or at worst is similar to what we have now with the default `sample_shape` argument.
cc. fritzo, alicanb, ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34900
Differential Revision: D20499065
Pulled By: ngimel
fbshipit-source-id: e5be225e3e219bd268f5f635aaa9bf7eca39f09c
Summary:
This modernizes distributions code by replacing a few uses of `.contiguous().view()` with `.reshape()`, fixing a sample bug in the `Categorical` distribution.
The bug is exercised by the following test:
```py
batch_shape = (1, 2, 1, 3, 1)
sample_shape = (4,)
cardinality = 2
logits = torch.randn(batch_shape + (cardinality,))
dist.Categorical(logits=logits).sample(sample_shape)
# RuntimeError: invalid argument 2: view size is not compatible with
# input tensor's size and stride (at least one dimension spans across
# two contiguous subspaces). Call .contiguous() before .view().
# at ../aten/src/TH/generic/THTensor.cpp:203
```
I have verified this works locally, but I have not added this as a regression test because it is unlikely to regress (the code is now simpler).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23328
Differential Revision: D16510678
Pulled By: colesbury
fbshipit-source-id: c125c1a37d21d185132e8e8b65241c86ad8ad04b
Summary:
**Closes:** Confusing documentation with distributions.Categorical about logits https://github.com/pytorch/pytorch/issues/16291
**Solution**: Changes documentation on the Categorical distribution from `log probabilities` to `event log-odds`. This makes should reduce confusion as raised by this issue, and is consistent with other distributions such as `torch.Binomial`.
More than happy to make any other changes if they fit :).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21707
Differential Revision: D15799181
Pulled By: soumith
fbshipit-source-id: f11acca7a5c130102a3ff6674640235ee5aa69bf
Summary:
I have experienced that sometimes both were in `__dict__`, but it chose to copy `probs` which loses precision over `logits`. This is especially important when training (bayesian) neural networks or doing other type of optimization, since the loss is heavily affected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18614
Differential Revision: D14793486
Pulled By: ezyang
fbshipit-source-id: d4ff5e34fbb4021ea9de9f58af09a7de00d80a63
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
This adds a small check in `Dirichlet` and `Categorical` `__init__` methods to ensure that scalar parameters are not admissible.
**Motivation**
Currently, `Dirichlet` throws no error when provided with a scalar parameter, but if we `expand` a scalar instance, it inherits the empty event shape from the original instance and gives unexpected results.
The alternative to this check is to promote `event_shape` to be `torch.Size((1,))` if the original instance was a scalar, but that seems to add a bit more complexity (and changes the behavior of `expand` in that it would affect the `event_shape` as well as the `batch_shape` now). Does this seem reasonable? cc. alicanb, fritzo.
```python
In [4]: d = dist.Dirichlet(torch.tensor(1.))
In [5]: d.sample()
Out[5]: tensor(1.0000)
In [6]: d.log_prob(d.sample())
Out[6]: tensor(0.)
In [7]: e = d.expand([3])
In [8]: e.sample()
Out[8]: tensor([0.3953, 0.1797, 0.4250]) # interpreted as events
In [9]: e.log_prob(e.sample())
Out[9]: tensor(0.6931) # wrongly summed out
In [10]: e.batch_shape
Out[10]: torch.Size([3])
In [11]: e.event_shape
Out[11]: torch.Size([]) # cannot be empty
```
Additionally, based on review comments, this removes `real_vector` constraint. This was only being used in `MultivariateNormal`, but I am happy to revert this if we want to keep it around for backwards compatibility.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11589
Differential Revision: D9818271
Pulled By: soumith
fbshipit-source-id: f9bbba90ed6f04e0b5bdfa169e70ca20b280fc74
Summary:
This works around #11535 by avoiding `arange(n, out=x)` and `eye(n, out=x)` in `torch.distributions`. I've confirmed that the `.enumerate_support()` methods are now jittable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11542
Differential Revision: D9777805
Pulled By: apaszke
fbshipit-source-id: fa38f2f1acfc0a289f725fd8c92478573cfdbefb
Summary:
This adds a `.expand` method for distributions that is akin to the `torch.Tensor.expand` method for tensors. It returns a new distribution instance with batch dimensions expanded to the desired `batch_shape`. Since this calls `torch.Tensor.expand` on the distribution's parameters, it does not allocate new memory for the expanded distribution instance's parameters.
e.g.
```python
>>> d = dist.Normal(torch.zeros(100, 1), torch.ones(100, 1))
>>> d.sample().shape
torch.Size([100, 1])
>>> d.expand([100, 10]).sample().shape
torch.Size([100, 10])
```
We have already been using the `.expand` method in Pyro in our [patch](https://github.com/uber/pyro/blob/dev/pyro/distributions/torch.py#L10) of `torch.distributions`. We use this in our models to enable dynamic broadcasting. This has also been requested by a few users on the distributions slack, and we believe will be useful to the larger community.
Note that currently, there is no convenient and efficient way to expand distribution instances:
- Many distributions use `TransformedDistribution` (or wrap over another distribution instance. e.g. `OneHotCategorical` uses a `Categorical` instance) under the hood, or have lazy parameters. This makes it difficult to collect all the relevant parameters, broadcast them and construct new instances.
- In the few cases where this is even possible, the resulting implementation would be inefficient since we will go through a lot of broadcasting and args validation logic in `__init__.py` that can be avoided.
The `.expand` method allows for a safe and efficient way to expand distribution instances. Additionally, this bypasses `__init__.py` (using `__new__` and populating relevant attributes) since we do not need to do any broadcasting or args validation (which was already done when the instance was first created). This can result in significant savings as compared to constructing new instances via `__init__` (that said, the `sample` and `log_prob` methods will probably be the rate determining steps in many applications).
e.g.
```python
>>> a = dist.Bernoulli(torch.ones([10000, 1]), validate_args=True)
>>> %timeit a.expand([10000, 100])
15.2 µs ± 224 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit dist.Bernoulli(torch.ones([10000, 100]), validate_args=True)
11.8 ms ± 153 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
cc. fritzo, apaszke, vishwakftw, alicanb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11341
Differential Revision: D9728485
Pulled By: soumith
fbshipit-source-id: 3b94c23bc6a43ee704389e6287aa83d1e278d52f
Summary:
This adds an optional `expand=True` kwarg to the `distribution.expand_support()` method, to get a distribution's support without expanding the values over the distribution's `batch_shape`.
- The default `expand=True` preserves the current behavior, whereas `expand=False` collapses the batch dimensions.
e.g.
```python
In [47]: d = dist.OneHotCategorical(torch.ones(3, 5) * 0.5)
In [48]: d.batch_shape
Out[48]: torch.Size([3])
In [49]: d.enumerate_support()
Out[49]:
tensor([[[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.]],
[[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.]],
[[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.]],
[[0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.]],
[[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.]]])
In [50]: d.enumerate_support().shape
Out[50]: torch.Size([5, 3, 5])
In [51]: d.enumerate_support(expand=False)
Out[51]:
tensor([[[1., 0., 0., 0., 0.]],
[[0., 1., 0., 0., 0.]],
[[0., 0., 1., 0., 0.]],
[[0., 0., 0., 1., 0.]],
[[0., 0., 0., 0., 1.]]])
In [52]: d.enumerate_support(expand=False).shape
Out[52]: torch.Size([5, 1, 5])
```
**Motivation:**
- Currently `enumerate_support` builds up tensors of size `support + batch_shape + event_shape`, but the values are *repeated* over the `batch_shape` (adding little in the way of information). This can lead to expensive matrix operations over large tensors when `batch_shape` is large (see, example above), often leading to OOM issues. We use `expand=False` in Pyro for message passing inference. e.g. when enumerating over the state space in a Hidden Markov Model. This creates sparse tensors that capture the markov dependence, and allows for the possibility of using optimized matrix operations over these sparse tensors. `expand=True`, on the other hand, will create tensors that scale exponentially in size with the length of the Markov chain.
- We have been using this in our [patch](https://github.com/uber/pyro/blob/dev/pyro/distributions/torch.py) of `torch.distributions` in Pyro. The interface has been stable, and it is already being used in a few Pyro algorithms. We think that this is more broadly applicable and will be of interest to the larger distributions community.
cc. apaszke, fritzo, alicanb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11231
Differential Revision: D9696290
Pulled By: soumith
fbshipit-source-id: c556f8ff374092e8366897ebe3f3b349538d9318
Summary:
`__repr__` currently fails for distributions with lazy attributes in PyTorch master, throwing a `KeyError`. This fixes the issue.
**Additionally:**
- Added `logits` to `arg_constraints` for distributions that accept either `probs` or `logits`. This is both to have `__repr__` display the `logits` param when available, and to be able to do validation checks (e.g. NaN checks) when the logit parametrization is used. fritzo, alicanb - I think there were reasons why we had not done so in the first place, but I am unable to recall now. It passes all the tests, but let me know if there is something that I am missing at the moment.
- There are certain distributions, e.g. `OneHotCategorical` which won't show any parameters because it uses a `categorical` instance under the hood and neither `logits` / `probs` in `arg_constraints` are present in the instance's `__dict__`. This isn't addressed in this PR.
cc. vishwakftw, fritzo, nadavbh12, apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11263
Differential Revision: D9654959
Pulled By: apaszke
fbshipit-source-id: 16f5b20243fe8e2c13e9c528050d4df0b8ea6e45
Summary:
This uses zou3519's new `torch.broadcast_tensors()` #10075 to make `Categorical.log_prob()` and the `*Normal.__init__()` methods jittable. Previously `.log_prob()` was failing due to calls to `torch._C.infer_size()` with errors like
```
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
> value_shape = torch._C._infer_size(value.size(), self.batch_shape) if self.batch_shape else value.size()
E RuntimeError: expected int at position 0, but got: Tensor
```
After this change I'm able to jit many more of Pyro's tests.
Reviewed By: ezyang
Differential Revision: D9477487
Pulled By: apaszke
fbshipit-source-id: 5f39b29c6b8fa606ad30b02fefe2dfb618e883d6
Summary:
This PR removes `distributions.utils._log_sum_exp` in favor of `torch.logsumexp`. Also fixes some warnings with `reduce` arg. in `binary_cross_entropy_with_logits`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9173
Reviewed By: SsnL
Differential Revision: D8764174
Pulled By: ezyang
fbshipit-source-id: b9c4136dbf0182e8ae77082e6448d23a430d5cb6
* Codemod to update our codebase to 0.4 standard
* Update some of the test scri[ts
* remove Variable in test_clip_grad_value
* fix _symbolic_override_wrapper_maker
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* Fix test_distributions when WITH_SCALARS.
* Use SCALAR_SHAPE in test, use self.scale in AffineTransform.
* Handle device correctly for scalars.
* Fix one hot categorical.
* Fix relaxed categorical.
* Add a new_tensor instance method to Variable that takes only data.
This is to work around the legacy problems of new, where e.g.
new(5) will give you an unfilled tensor rather than a scalar.
* Fix cuda scalar code path.
* Remove double return.
* Work around lack of WITH_SCALARS.
* Use tensor_new.