# Context
Previously, we would modify the parent process's NUMA bindings in order to force child process to inherit them.
However, this would not work correctly if `start_method="forkserver"`, because the subprocesses would actually inherit their bindings from the forkserver middleman process. In this case, the inherited affinity would actually be incorrect for all but the first subprocess (because the forkserver process would get created lazily, and hence inherit and then stick with the bindings intended for the first subprocess).
# This PR
* `str` entrypoints: Use `numactl` CLI
* `Callable` entrypoints: Wrap the `Callable` entrypoint and call `os.sched_setaffinity` inside it.
Hopefully this will be the last necessary iteration.
# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`
## Manual
Verified flops/sec and memory locality wins on several different types of jobs
* `Callable` with forkserver
* `str` entrypoint with spawn
* `Callable` entrypoint with spawn
More details in [this doc (Meta-only).](https://docs.google.com/document/d/1vxD-OKYBTT27jbBwtW9iz9g0tNM0u-i0tiTJg_ieQA8/edit?tab=t.scjv58yswi64)
# Later PR
Update all the documentation when we're confident this has stabilized.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166026
Approved by: https://github.com/d4l3k
Co-authored-by: PyTorch MergeBot <pytorchmergebot@users.noreply.github.com>
Summary:
Part of an effort to extract some important error logs (e.g. [#157996](https://github.com/pytorch/pytorch/pull/157996)) that was `tee`'ed to `stdout` and `stderr`.
The general idea is to:
- Duplicate the `tee`s on `stdout` and `stderr` to a separate file, `filtered_stdout.log` and `filtered_stderr.log`, respectively.
- In these files, as its name suggests, only log lines matching a customizable filter.
- Later on in another PR, append the contents of these files to the reply file.
Outline of changes in this PR:
- Enhance `TailLog` to be able to 1) stream to a file, and 2) only write when the line matches the passed filter.
- Add `filtered_stdout` and `filtered_stderr` to `LogsDest` and have `LogsSpecs` `reify` them.
- In `start_processes()` and `PContext`, add params `duplicate_stdout_filters` and `duplicate_stderr_filters` to filter and write the duplicated stream to the files above. When no filters are passed in, no duplicated streams are created.
Test Plan:
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:api_test
```
```
Buck UI: https://www.internalfb.com/buck2/f5c6b7da-217d-4a0b-872a-c7cd3d05587f
Test UI: https://www.internalfb.com/intern/testinfra/testrun/4222124951617688
Network: Up: 398B Down: 44MiB (reSessionID-a489a961-b602-45be-b851-3490ebb7a26a)
Analyzing targets. Remaining 0/200
Executing actions. Remaining 0/12856 0.1s exec time total
Command: test. Finished 1 local
Time elapsed: 17:37.9s
Tests finished: Pass 52. Fail 0. Fatal 0. Skip 0. Build failure 0
```
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:tail_log_test
```
```
Buck UI: https://www.internalfb.com/buck2/d6d5c1c1-db98-4d9c-b608-7ba6fbb5e3ee
Test UI: https://www.internalfb.com/intern/testinfra/testrun/13510798985149262
Network: Up: 94KiB Down: 417MiB (reSessionID-27b46fba-d31c-4c04-8ede-a506454e6922)
Analyzing targets. Remaining 0/3 536 actions, 555 artifacts declared
Executing actions. Remaining 0/186 1:05.5s exec time total
Command: test. Finished 7 local, 1 remote, 115 cache (93% hit) 37.0s exec time cached (56%)
Time elapsed: 1:11.5s
Tests finished: Pass 7. Fail 0. Fatal 0. Skip 0. Build failure 0
```
Rollback Plan:
Differential Revision: D80188995
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160712
Approved by: https://github.com/fduwjj
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
Fixes#154849
This change addresses the request to add support for SIGUSR1 and SIGUSR2 signals in torchrun for SLURM environments. Changes supports these signals through the configurable `TORCHELASTIC_SIGNALS_TO_HANDLE` environment variable and signals_to_handle parameter from laucher api
Tests:
For validations purpose:
test_signal_handling.py,
simple_test_api_signal_handling.py,
Unit Tests:
for launcher changes:launcher/test_api.py
for api changes: multiprocessing/test_api.py
E2E: test_run.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160690
Approved by: https://github.com/fduwjj
# Context
In #161183, we added NUMA-binding support for `Callable` entrypoints to `elastic_launch`.
However, we would raise an exception if the subprocesses would be spawned in parallel via `ThreadPoolExecutor`, which is an option configurable via the `TORCH_MP_PARALLEL_START` environment variable (see diff).
The logic here was that `os.sched_setaffinity`, which we used to set CPU affinities, is [per process](https://docs.python.org/3/library/os.html#os.sched_setaffinity), so there could be a race condition during a parallel start:
> Restrict the process with PID pid (or the current process if zero) to a set of CPUs. mask is an iterable of integers representing the set of CPUs to which the process should be restricted.
But on further reading, the Linux docs say [`sched_setaffinity` is per *thread*.](https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html) As it turns out, the Python doc is a misnomer.
I [verified that `sched_setaffinity` only affects the calling thread, not the entire calling process.](https://gist.github.com/pdesupinski/7e2de3cbe5bb48d489f257b83ccddf07)
The upshot is that we actually *can* safely use the inheritance trick from #161183 even with parallel start, since the setting will be inherited from the calling thread, and `os.sched_setaffinity` only affects the calling thread.
# This PR
Remove restrictions against parallel start for NUMA binding.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161576
Approved by: https://github.com/d4l3k
# Context
In #160163, we added support for NUMA binding for `Callable` entrypoints to `elastic_launch`. This requires special consideration, because they go through a different path to spawn subprocesses compared to `str` entrypoints, a path which does not provide a straightforward way to utilize `numactl` CLI. See #160006 for a full description of the challenges.
Although #160163 worked in initial local experiments, we ran into some linker errors in other environments when we tried to call `numactl`. This appeared to be due to interactions with how the `LD_PRELOAD` environment variable was being set.
# This PR
On further thought, the most straightforward, foolproof solution here is to use [the trick that @d4l3k suggested.](https://github.com/pytorch/pytorch/issues/160006#issuecomment-3162018836)
Specifically, for each local rank `i`:
1. The parent process sets its own CPU affinity to what local rank `i`'s should be.
2. Then, the parent spawns the subprocess for local rank `i`.
3. Finally, the parent resets its own CPU affinity to what it was originally.
There were other solutions that would work just for `Callable` entrypoints, but I believe this is the simplest one that can work for *both* `str` and `Callable`, and it's pretty simple.
This required a bit of refactoring:
1. Turn all the `_get_.*_numactl_options` into functions which return a set of logical CPUs to bind to, rather than options like `--cpunodebind=0`.
2. Instead of wrapping commands with `numactl`, use `os.sched_setaffinity` to bind to the CPUs from (1.).
3. Put this all inside a context manager which encapsulates applying and restoring the bindings in the parent process.
4. Use the context manager for both `str` and `Callable` paths
# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`
## Manual
See [doc.](https://docs.google.com/document/d/1vxD-OKYBTT27jbBwtW9iz9g0tNM0u-i0tiTJg_ieQA8/edit?tab=t.0) Meta only, but TLDR tried out every combination of `str`, `Callable`, binding disabled, and binding enabled on the same model and saw 2x SM utilization for binding enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161183
Approved by: https://github.com/d4l3k
# Context
This is an extension of #149334.
# This PR
Add support for NUMA bindings with Callable entrypoints, such as `do_train` instead of `/usr/local/bin/python`.
Most notably, we utilize a hack in order to force `Process.start()` to use custom NUMA bindings for each subprocess. Please search for `HACK:` in the code to see a description of the implementation we chose, and #160006 for discussion of alternatives and why this is necessary.
Other changes:
* Remove unnecessary `--preferred` option from all binding strategies. By default, Linux already allocates memory to the NUMA node local to the CPU which triggered the allocation. (See [MPOL_LOCAL](https://man7.org/linux/man-pages/man2/set_mempolicy.2.html).)
* Refactor so that the main API is `maybe_wrap_command_with_numa_bindings`, which computes bindings for a single rank at a time, rather than `maybe_wrap_with_numa_bindings` which computed bindings for all ranks at once. This allowed for more code sharing between `Callable` and `str` entrypoints.
# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`
## Manual
Using [this benchmark,](https://gist.github.com/pdesupinski/bbe01ade455d86e989794f2c612e2d91), ran
```
$ PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -m torch.distributed.run --standalone --nproc-per-node=8 --numa-binding=node --run-path mlp_train.py 2>&1 | tee node_callable.txt && PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -u -m torch.distributed.run --standalone --nproc-per-node=8 --run-path mlp_train.py 2>&1 | tee none_callable.txt
```
and observed
* 6.6% remote memory accesses with 'node' bindings
* 11.6% remote without bindings
I also ran similar with `str` entrypoints as before just to be sure it's still working.
NOTE: [--run-path triggers the code to be run inside a `Callable`.](017259f9c6/torch/distributed/run.py (L870))
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160163
Approved by: https://github.com/d4l3k
Change logging.error to logging.exception to log additional information when relevant. A few places have slipped in logging.errors in try except since I last did a clean up here and the rule is stabilized so I am enabling it codebase wide. I have NOQA'd much of our custom exception stack trace handling for RPC calls and distributed and tried to a fix a few errors based on whether we immediately reraised it or if we didn't print any exception handling where it could be useful.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153473
Approved by: https://github.com/albanD, https://github.com/cyyever
Summary:
In multiprocessing, signal handling is not possible if the thread is not the main thread. This resulted in the following error:
> "ValueError('signal only works in main thread of the main interpreter')"
To address this issue, the diff checks whether the thread is the main thread and, if not, skips signal handling.
Test Plan:
Before this change, MAST job failed:
https://fburl.com/mlhub/iq2m10v8
With this change, MAST job succeeded:
https://fburl.com/mlhub/q6kb8343
Differential Revision: D62166943
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135088
Approved by: https://github.com/d4l3k
The current call passes in `['/actual/path']` to os.walk which is a string pointing to no path and thus silently leads to and empty traversal.
There is an unused function just above that handles that, so I guess this is what was supposed to be called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126103
Approved by: https://github.com/suo
Observed Problem
---------------------
When `torchrun` has finished running the main trainer function (aka entrypoint/user function) successfully, I noticed that sometimes it SIGTERMS the child processes. Then `torchrun` exits successfully.
This results in misleading warning log messages towards the end of the job like the one below:
```
W0510 14:52:48.185934 672413 api.py:513] Closing process 675171 via signal SIGTERM
W0510 14:52:48.185984 672413 api.py:513] Closing process 675172 via signal SIGTERM
W0510 14:52:48.186013 672413 api.py:513] Closing process 675174 via signal SIGTERM
# <---- ^^^ ??? everything runs successfully but child still SIGTERM'ed? ^^^ --->
I0510 14:52:48.229119 672413 api.py:877] [main] worker group successfully finished. Waiting 300 seconds for other agents to finish.
I0510 14:52:48.229161 672413 api.py:922] Local worker group finished (WorkerState.SUCCEEDED). Waiting 300 seconds for other agents to finish
I0510 14:52:48.229395 672413 api.py:936] Done waiting for other agents. Elapsed: 0.0001709461212158203 seconds
I0510 14:52:48.257544 672413 dynamic_rendezvous.py:1131] The node 'localhost_672413_0' has closed the rendezvous 'torchrun_qpfd'.
I0510 14:52:48.568198 672413 distributed.py:200] Deleting temp log directory: /tmp/torchrun_udgp8zoq
I0510 14:52:48.568989 672413 distributed.py:202] Finished running `main`
```
Root Cause
------------------
I noticed that this was due to the incorrect usage of `torch.multiprocessing.ProcessContext.join()` in `torch.distributed.elastic.multiprocessing.api.MultiprocessingContext`.
`torch.multiprocessing.ProcessContext.join()` does not actually wait for ALL child procs to exit, but rather waits for **at-least-one** child proc to exit. If only a subset of the child procs have exited, it returns `False` and if all child procs have exited it returns `True`.
`torch.distributed.elastic.multiprocessing.api.MultiprocessingContext` was assuming that `torch.multiprocessing.ProcessContext.join()` blocks indefinitely until all child procs have exited.
Fix
---------
The fix is simple, just loop, while continuing to call `pc.join()` until it returns `True`
> **NOTE**: that the indefinite blocking is NOT an issue since by the time `torch.distributed.elastic.multiprocessing.api.MultiprocessingContext` calls `pc.join()` it already did all the checking to validate that the entrypoint functions either return successfully or that one of them has failed. So we are really just waiting for the unix process to exit after running the entrypoint function.
> **NOTE**: since `pc.join()` already blocks until at-least-one child proc exits, there is no need to add a polling interval in the body of the loop and the debug logging will show at most `nproc_per_node` times so no log spamming is observed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125969
Approved by: https://github.com/d4l3k
Summary:
Minor logging cleanup in distributed library
1. Don't use "f" formatted strings - address linter issues.
2. Nits: Make use of unused `e` (error) in a few logs.
3. Change info->debug as asked in issue #113545
4. Nit: rename log -> logger in a few files for consistency
5. Fix a linter error.
Test Plan:
1. Local build passes.
2. Linter is happy.
Reviewers: wanchaol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122921
Approved by: https://github.com/wanchaol
Summary:
## No Functional Change
- Refactor Subprocess Handler into a separate folder for easier subclassing
- SubprocessHandler
- added `local_rank_id` in `SubprocessHandler` to make it available as a field in the class
- pass in `local_rank_id` from subprocess start
Test Plan: No functional changes.
Differential Revision: D54038627
#suppress-api-compatibility-check
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120373
Approved by: https://github.com/kurman
Summary:
Expose an option to users to specify name of the LogsSpec implementation to use.
- Has to be defined in entrypoints under `torchrun.logs_specs` group.
- Must implement LogsSpec defined in prior PR/diff.
Test Plan: unit test+local tests
Reviewed By: ezyang
Differential Revision: D54180838
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120942
Approved by: https://github.com/ezyang
Summary:
Pulling out logging parameters into a logging specs that can be overridden (follow-up changes on possible mechanism)
Why?
Right now the logging approach is quite rigid:
- Requires for log directory to exist and not be empty
- Will create tempdir otherwise,
- Creates subdir for a run
- creates subdir for each attempt
- creates files named as stdout.log, stderr.log, error.json
In some instances some of the users would like to customize the behavior including file names based on context. And we do have right now a mechanism to template multiplexed teed output prefix.
With current changes, users can create custom log spec that can use env variables to change the behavior.
Notes:
Made `LaunchConf.logs_specs` as an optional field that will be bound to `DefaultLogsSpecs` instance. There are large number of clients (code) that use the API directly without using torchrun API. For those cases, we have to explicitly pass LogSpecs implementation if we would like to override the implementation. For the regular torchrun users, we can use pluggable approach proposed in the follow up change.
Test Plan: CI + unit tests
Differential Revision: D54176265
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120691
Approved by: https://github.com/ezyang