Commit Graph

112 Commits

Author SHA1 Message Date
PyTorch MergeBot
924482a6f6 Replace NUMA inheritance approach (#166026)
# Context
Previously, we would modify the parent process's NUMA bindings in order to force child process to inherit them.

However, this would not work correctly if `start_method="forkserver"`, because the subprocesses would actually inherit their bindings from the forkserver middleman process. In this case, the inherited affinity would actually be incorrect for all but the first subprocess (because the forkserver process would get created lazily, and hence inherit and then stick with the bindings intended for the first subprocess).

# This PR
* `str` entrypoints: Use `numactl` CLI
* `Callable` entrypoints: Wrap the `Callable` entrypoint and call `os.sched_setaffinity` inside it.

Hopefully this will be the last necessary iteration.

# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`

## Manual
Verified flops/sec and memory locality wins on several different types of jobs
* `Callable` with forkserver
* `str` entrypoint with spawn
* `Callable` entrypoint with spawn

More details in [this doc (Meta-only).](https://docs.google.com/document/d/1vxD-OKYBTT27jbBwtW9iz9g0tNM0u-i0tiTJg_ieQA8/edit?tab=t.scjv58yswi64)

# Later PR
Update all the documentation when we're confident this has stabilized.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166026
Approved by: https://github.com/d4l3k

Co-authored-by: PyTorch MergeBot <pytorchmergebot@users.noreply.github.com>
2025-10-29 03:58:44 +00:00
Yuanyuan Chen
a60d9e1f6d Fix flake8 B028 warnings (#166224)
This PR fixes flake8 B028 warning by specifying stacklevel=2 in `warnings.warn`. The advantage is that users can know more contextual information about PyTorch warnings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166224
Approved by: https://github.com/ezyang
2025-10-26 06:18:55 +00:00
Maggie Moss
8f80892359 Use correct pyrefly syntax in suppressions distributed/... (#166241)
Updates the pyrefy-ignores in the torch/distributed directory to use the correct syntax. No functional changes.

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166241
Approved by: https://github.com/oulgen
2025-10-26 04:16:41 +00:00
Phil Hu
cbcb4f7768 [pytorch][torchelastic] Duplicate stdout and stderr and apply custom filter in torchrun (#160712)
Summary:
Part of an effort to extract some important error logs (e.g. [#157996](https://github.com/pytorch/pytorch/pull/157996)) that was `tee`'ed to `stdout` and `stderr`.

The general idea is to:

- Duplicate the `tee`s on `stdout` and `stderr` to a separate file, `filtered_stdout.log` and `filtered_stderr.log`, respectively.
- In these files, as its name suggests, only log lines matching a customizable filter.
- Later on in another PR, append the contents of these files to the reply file.

Outline of changes in this PR:

- Enhance `TailLog` to be able to 1) stream to a file, and 2) only write when the line matches the passed filter.
- Add `filtered_stdout` and `filtered_stderr` to `LogsDest` and have `LogsSpecs` `reify` them.
- In `start_processes()` and `PContext`, add params `duplicate_stdout_filters` and `duplicate_stderr_filters` to filter and write the duplicated stream to the files above. When no filters are passed in, no duplicated streams are created.

Test Plan:
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:api_test
```
```
Buck UI: https://www.internalfb.com/buck2/f5c6b7da-217d-4a0b-872a-c7cd3d05587f
Test UI: https://www.internalfb.com/intern/testinfra/testrun/4222124951617688
Network: Up: 398B  Down: 44MiB  (reSessionID-a489a961-b602-45be-b851-3490ebb7a26a)
Analyzing targets. Remaining     0/200
Executing actions. Remaining     0/12856                                                                                                                                        0.1s exec time total
Command: test.     Finished 1 local
Time elapsed: 17:37.9s
Tests finished: Pass 52. Fail 0. Fatal 0. Skip 0. Build failure 0
```
```
$ buck test 'fbcode//mode/opt' caffe2/test/distributed/elastic/multiprocessing:tail_log_test
```
```
Buck UI: https://www.internalfb.com/buck2/d6d5c1c1-db98-4d9c-b608-7ba6fbb5e3ee
Test UI: https://www.internalfb.com/intern/testinfra/testrun/13510798985149262
Network: Up: 94KiB  Down: 417MiB  (reSessionID-27b46fba-d31c-4c04-8ede-a506454e6922)
Analyzing targets. Remaining     0/3                                                                                                                                            536 actions, 555 artifacts declared
Executing actions. Remaining     0/186                                                                                                                                          1:05.5s exec time total
Command: test.     Finished 7 local, 1 remote, 115 cache (93% hit)                                                                                                              37.0s exec time cached (56%)
Time elapsed: 1:11.5s
Tests finished: Pass 7. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Rollback Plan:

Differential Revision: D80188995

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160712
Approved by: https://github.com/fduwjj
2025-10-23 14:22:21 +00:00
Yuanyuan Chen
3255e7872b Enable all flake8-logging-format rules (#164655)
These rules are enabled by removing existing suppressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164655
Approved by: https://github.com/janeyx99, https://github.com/mlazos
2025-10-19 00:59:28 +00:00
Yuanyuan Chen
fdab48a7c1 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 07:36:18 +00:00
PyTorch MergeBot
24520b8386 Revert "Enable all PIE rules on ruff (#165814)"
This reverts commit c79dfdc655.

Reverted https://github.com/pytorch/pytorch/pull/165814 on behalf of https://github.com/cyyever due to Need to cover more files ([comment](https://github.com/pytorch/pytorch/pull/165814#issuecomment-3417931863))
2025-10-18 07:21:08 +00:00
Yuanyuan Chen
c79dfdc655 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 06:40:12 +00:00
Xilun Wu
d0c24b392c [APF Logging][Error Trait] To fill the errorTraits for ChildFailedError with signal abort (re-attempt of #165476) (#165688)
**Summary**
Land @guoding83128 's PR https://github.com/pytorch/pytorch/pull/165476 on his behalf due to EasyCLA blocking.
Refer his original PR for detail. But in short, elastic leaves 'errorTraits' as unknown when the error dump file is missing,
this PR adds a "system terminated error" to such case so the internal scuba table can correctly aggregate.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165688
Approved by: https://github.com/fduwjj
2025-10-17 08:23:27 +00:00
Maggie Moss
7457d139c5 Add pyrefly suppressions to torch/distributed (7/n) (#165002)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

One more PR after this one.

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165002
Approved by: https://github.com/oulgen
2025-10-09 04:08:25 +00:00
Yuanyuan Chen
da003d7b95 [3/N] Import Callable from collections.abc in torch/distributed (#164104)
This is the result of applying the ruff `UP035` check.
`Callable` is imported from `collections.abc` instead of `typing`.
This PR is the follow-up of #164054.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164104
Approved by: https://github.com/Skylion007
2025-09-30 00:28:53 +00:00
Amandeep Chhabra
4f641aa1a2 capturing exit codes after sigterm/sigkill from torch elastic. (#160908)
Summary:
**Background**
Torch Elastic sends SIGKILL/SIGTERM signals if any process fails while others are still running. However, processes terminated by these signals do not generate termination logs, causing confusion.

**Solution**
Capture exit codes after SIGTERM signals to ensure complete and accurate termination logging.

Test Plan:
unit tests

https://www.internalfb.com/mlhub/pipelines/runs/mast/f773486907-TrainingApplication__13_D79584569?job_attempt=1&version=0&tab=summary&env=PRODUCTION

Rollback Plan:

Differential Revision: D79584569

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160908
Approved by: https://github.com/d4l3k
2025-09-17 17:41:35 +00:00
SandishKumarHN
b498299953 154849 Add support to handle IGUSR1 and SIGUSR2 in multiprocessing (#160690)
Fixes #154849

This change addresses the request to add support for SIGUSR1 and SIGUSR2 signals in torchrun for SLURM environments.  Changes supports these signals through the configurable `TORCHELASTIC_SIGNALS_TO_HANDLE` environment variable and signals_to_handle parameter from laucher api

Tests:
For validations purpose:
test_signal_handling.py,
simple_test_api_signal_handling.py,

Unit Tests:
for launcher changes:launcher/test_api.py
for api changes:  multiprocessing/test_api.py
E2E: test_run.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160690
Approved by: https://github.com/fduwjj
2025-09-09 22:23:06 +00:00
Paul de Supinski
768a1017c5 Allow parallel start NUMA binding (#161576)
# Context
In #161183, we added NUMA-binding support for `Callable` entrypoints to `elastic_launch`.

However, we would raise an exception if the subprocesses would be spawned in parallel via `ThreadPoolExecutor`, which is an option configurable via the `TORCH_MP_PARALLEL_START` environment variable (see diff).

The logic here was that `os.sched_setaffinity`, which we used to set CPU affinities, is [per process](https://docs.python.org/3/library/os.html#os.sched_setaffinity), so there could be a race condition during a parallel start:

> Restrict the process with PID pid (or the current process if zero) to a set of CPUs. mask is an iterable of integers representing the set of CPUs to which the process should be restricted.

But on further reading, the Linux docs say [`sched_setaffinity` is per *thread*.](https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html) As it turns out, the Python doc is a misnomer.

I [verified that `sched_setaffinity` only affects the calling thread, not the entire calling process.](https://gist.github.com/pdesupinski/7e2de3cbe5bb48d489f257b83ccddf07)

The upshot is that we actually *can* safely use the inheritance trick from #161183 even with parallel start, since the setting will be inherited from the calling thread, and `os.sched_setaffinity` only affects the calling thread.

# This PR
Remove restrictions against parallel start for NUMA binding.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161576
Approved by: https://github.com/d4l3k
2025-08-28 01:15:58 +00:00
Paul de Supinski
33346b5814 Support NUMA Binding for Callable Entrypoints, Take 2 (#161183)
# Context
In #160163, we added support for NUMA binding for `Callable` entrypoints to `elastic_launch`. This requires special consideration, because they go through a different path to spawn subprocesses compared to `str` entrypoints, a path which does not provide a straightforward way to utilize `numactl` CLI. See #160006 for a full description of the challenges.

Although #160163 worked in initial local experiments, we ran into some linker errors in other environments when we tried to call `numactl`. This appeared to be due to interactions with how the `LD_PRELOAD` environment variable was being set.

# This PR
On further thought, the most straightforward, foolproof solution here is to use [the trick that @d4l3k suggested.](https://github.com/pytorch/pytorch/issues/160006#issuecomment-3162018836)

Specifically, for each local rank `i`:
1. The parent process sets its own CPU affinity to what local rank `i`'s should be.
2. Then, the parent spawns the subprocess for local rank `i`.
3. Finally, the parent resets its own CPU affinity to what it was originally.

There were other solutions that would work just for `Callable` entrypoints, but I believe this is the simplest one that can work for *both* `str` and `Callable`, and it's pretty simple.

This required a bit of refactoring:
1. Turn all the `_get_.*_numactl_options` into functions which return a set of logical CPUs to bind to, rather than options like `--cpunodebind=0`.
2. Instead of wrapping commands with `numactl`, use `os.sched_setaffinity` to bind to the CPUs from (1.).
3. Put this all inside a context manager which encapsulates applying and restoring the bindings in the parent process.
4. Use the context manager for both `str` and `Callable` paths

# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`

## Manual
See [doc.](https://docs.google.com/document/d/1vxD-OKYBTT27jbBwtW9iz9g0tNM0u-i0tiTJg_ieQA8/edit?tab=t.0) Meta only, but TLDR tried out every combination of `str`, `Callable`, binding disabled, and binding enabled on the same model and saw 2x SM utilization for binding enabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161183
Approved by: https://github.com/d4l3k
2025-08-23 07:23:22 +00:00
Phil Xiaojun Hu
089c4a1ba0 Fix wrong log file name in the docs of torch.distributed.elastic.multiprocessing.start_processes() (#160396)
Fixes #160395

In https://docs.pytorch.org/docs/stable/elastic/multiprocessing.html#starting-multiple-workers and also in the code comment of the function[1], it was specified that:

```
    For each process, the ``log_dir`` will contain:

    #. ``{local_rank}/error.json``: if the process failed, a file with the error info
    #. ``{local_rank}/stdout.json``: if ``redirect & STDOUT == STDOUT``
    #. ``{local_rank}/stderr.json``: if ``redirect & STDERR == STDERR``
```

While in code[2], the files are `stdout.log` and `stderr.log`, instead of the `.json` ones listed in the doc.

[1]: https://github.com/pytorch/pytorch/blob/main/torch/distributed/elastic/multiprocessing/__init__.py#L144-L145
[2]: https://github.com/pytorch/pytorch/blob/main/torch/distributed/elastic/multiprocessing/api.py#L354-L357

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160396
Approved by: https://github.com/fduwjj
2025-08-14 08:24:07 +00:00
Paul de Supinski
7e91394955 Support NUMA Binding for Callable Entrypoints (#160163)
# Context
This is an extension of #149334.

# This PR
Add support for NUMA bindings with Callable entrypoints, such as `do_train` instead of `/usr/local/bin/python`.

Most notably, we utilize a hack in order to force `Process.start()` to use custom NUMA bindings for each subprocess. Please search for `HACK:` in the code to see a description of the implementation we chose, and #160006 for discussion of alternatives and why this is necessary.

Other changes:
* Remove unnecessary `--preferred` option from all binding strategies. By default, Linux already allocates memory to the NUMA node local to the CPU which triggered the allocation. (See [MPOL_LOCAL](https://man7.org/linux/man-pages/man2/set_mempolicy.2.html).)
* Refactor so that the main API is `maybe_wrap_command_with_numa_bindings`, which computes bindings for a single rank at a time, rather than `maybe_wrap_with_numa_bindings` which computed bindings for all ranks at once. This allowed for more code sharing between `Callable` and `str` entrypoints.

# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`

## Manual
Using [this benchmark,](https://gist.github.com/pdesupinski/bbe01ade455d86e989794f2c612e2d91), ran

```
$ PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -m torch.distributed.run --standalone --nproc-per-node=8 --numa-binding=node --run-path mlp_train.py 2>&1 | tee node_callable.txt && PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -u -m torch.distributed.run --standalone --nproc-per-node=8 --run-path mlp_train.py 2>&1 | tee none_callable.txt
```

and observed
* 6.6% remote memory accesses with 'node' bindings
* 11.6% remote without bindings

I also ran similar with `str` entrypoints as before just to be sure it's still working.

NOTE: [--run-path triggers the code to be run inside a `Callable`.](017259f9c6/torch/distributed/run.py (L870))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160163
Approved by: https://github.com/d4l3k
2025-08-12 20:08:49 +00:00
raghavhrishi
7ef3c3357d NUMA binding integration with elastic agent and torchrun (#149334)
Implements #148689

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149334
Approved by: https://github.com/d4l3k

Co-authored-by: Paul de Supinski <pdesupinski@gmail.com>
2025-07-25 21:19:49 +00:00
Xuehai Pan
4ccc0381de [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-23 02:57:28 +00:00
PyTorch MergeBot
145d4cdc11 Revert "[BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)"
This reverts commit c2f0292bd5.

Reverted https://github.com/pytorch/pytorch/pull/156315 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
Xuehai Pan
c2f0292bd5 [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-22 08:43:26 +00:00
PyTorch MergeBot
3443627e07 Revert "[BE]: Enable RUFF TRY400 rule - log.exception (#153473)"
This reverts commit 4f4ecc583e.

Reverted https://github.com/pytorch/pytorch/pull/153473 on behalf of https://github.com/jeanschmidt due to seems to have broken internal signals, @albanD may I count on you to help the author merge his PR? D74837988 ([comment](https://github.com/pytorch/pytorch/pull/153473#issuecomment-2886017075))
2025-05-16 08:29:26 +00:00
Aaron Gokaslan
4f4ecc583e [BE]: Enable RUFF TRY400 rule - log.exception (#153473)
Change logging.error to logging.exception to log additional information when relevant.  A few places have slipped in logging.errors in try except since I last did a clean up here and the rule is stabilized so I am enabling it codebase wide. I have NOQA'd much of our custom exception stack trace handling for RPC calls and distributed and tried to a fix a few errors based on whether we immediately reraised it or if we didn't print any exception handling where it could be useful.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153473
Approved by: https://github.com/albanD, https://github.com/cyyever
2025-05-15 13:36:59 +00:00
Thomas Adams
8494d5582a Propagate callable parameter types using ParamSpec (#142306) (#151014)
Partially addresses #142306

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151014
Approved by: https://github.com/Skylion007
2025-04-13 20:38:11 +00:00
Xuehai Pan
995df34b19 [BE][PYFMT] migrate PYFMT for torch.{distributed,distributions} to ruff format (#144547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144547
Approved by: https://github.com/kwen2501
2025-02-28 07:35:56 +00:00
Aaron Orenstein
db4ce78d46 PEP585: More UP006 fixes (#146392)
This should be the final PR before we can enable RUFF UP006.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146392
Approved by: https://github.com/justinchuby, https://github.com/albanD, https://github.com/Skylion007
2025-02-20 06:18:13 +00:00
Link Li
995f607c74 fix doc string (#146968)
Fixes a wrong function name in doc string

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146968
Approved by: https://github.com/zackycao, https://github.com/H-Huang
2025-02-12 21:43:16 +00:00
Aaron Gokaslan
292af3cc89 [BE][Ez]: ISC001 Auto concatenate implicit one line strings (#146408)
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2025-02-04 19:07:04 +00:00
Aaron Orenstein
316808e4e9 PEP585 update - torch/distributed/elastic torch/distributed/checkpoint (#145163)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145163
Approved by: https://github.com/Skylion007
2025-01-19 20:55:59 +00:00
bobrenjc93
08be9ec312 Migrate from Tuple -> tuple in torch/distributed (#144258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144258
Approved by: https://github.com/aorenste
2025-01-10 08:34:54 +00:00
bobrenjc93
88ccf2fa5e remove allow-untyped-defs from distributed/elastic/multiprocessing/subprocess_handler/handlers.py (#143917)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143917
Approved by: https://github.com/Skylion007
2024-12-28 00:13:05 +00:00
bobrenjc93
fda9048ca8 remove allow-untyped-defs from distributed/elastic/multiprocessing/errors/handlers.py (#143869)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143869
Approved by: https://github.com/Skylion007
2024-12-27 15:49:19 +00:00
bobrenjc93
dd346dbeab remove allow-untyped-defs from torch/distributed/elastic/multiprocessing/errors/handlers.py (#143605)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143605
Approved by: https://github.com/aorenste
2024-12-20 05:25:01 +00:00
Jane Xu
fd65bd755d [BE] replace incorrect .. note:: invocations (#142868)
Something I've noticed is that a lot of the distributed sites don't render on our docs at all, but if they ever do, the notes will render properly now 😛

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142868
Approved by: https://github.com/albanD
2024-12-11 19:58:18 +00:00
Tom Ritchford
c0582fd0f8 Remove unused Python variables in torch/[b-z]* (#136963)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136963
Approved by: https://github.com/ezyang
2024-10-19 16:45:22 +00:00
Yiwen Shi
3a9e33dca8 [torchelastic] Don't do signal handling when off the main thread (#135088)
Summary:
In multiprocessing, signal handling is not possible if the thread is not the main thread. This resulted in the following error:
> "ValueError('signal only works in main thread of the main interpreter')"

To address this issue, the diff checks whether the thread is the main thread and, if not, skips signal handling.

Test Plan:
Before this change, MAST job failed:
https://fburl.com/mlhub/iq2m10v8

With this change, MAST job succeeded:
https://fburl.com/mlhub/q6kb8343

Differential Revision: D62166943

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135088
Approved by: https://github.com/d4l3k
2024-09-06 14:47:03 +00:00
Xuehai Pan
758a0a88a2 [BE][Easy] enable ruff rule PIE790: unnecessary pass statement (#133200)
This PR removes unnecessary `pass` statement. This is semanticly safe because the bytecode for the Python code does not change.

Note that if there is a docstring in the function, a empty function does not need a `pass` statement as placeholder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133200
Approved by: https://github.com/malfet, https://github.com/eqy, https://github.com/kit1980
2024-08-15 15:50:19 +00:00
Cheng Ni
27c9262d29 Fix stdout / stderr typing in SubprocessHandler (#132071)
Summary: Fix stdout / stderr typing in SubprocessHandler. Stdout and Stderr should be `Optional[str]` instead of `str`.

Test Plan: CI

Differential Revision: D60319648

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132071
Approved by: https://github.com/Skylion007
2024-07-31 02:51:11 +00:00
Xuehai Pan
e6d4451ae8 [BE][Easy] enable UFMT for torch/distributed/{algorithms,autograd,benchmarks,checkpoint,elastic}/ (#128866)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128866
Approved by: https://github.com/fegin
2024-06-18 13:51:53 +00:00
Aaron Orenstein
3a0d088517 Flip default value for mypy disallow_untyped_defs [5/11] (#127842)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127842
Approved by: https://github.com/oulgen
2024-06-08 18:49:18 +00:00
Kostas Tsiampouris
2863c76b1f [torch-distributed] Make log directory creation idempotent (#126496)
Summary:
https://docs.python.org/3/library/os.html#os.makedirs
> If exist_ok is False (the default), a FileExistsError is raised if the target directory already exists.

Test Plan: Existing tests

Differential Revision: D57471577

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126496
Approved by: https://github.com/d4l3k
2024-05-18 00:17:13 +00:00
albanD
af9acc4168 Fix public binding to actually traverse modules (#126103)
The current call passes in `['/actual/path']` to os.walk which is a string pointing to no path and thus silently leads to and empty traversal.
There is an unused function just above that handles that, so I guess this is what was supposed to be called.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126103
Approved by: https://github.com/suo
2024-05-15 19:36:03 +00:00
Kiuk Chung
92eb1731d4 [torch/distributed] Bugfix: wait for all child procs to exit before c… (#125969)
Observed Problem
---------------------

When `torchrun` has finished running the main trainer function (aka entrypoint/user function) successfully, I noticed that sometimes it SIGTERMS the child processes. Then `torchrun` exits successfully.

This results in misleading warning log messages towards the end of the job like the one below:

```
W0510 14:52:48.185934  672413 api.py:513] Closing process 675171 via signal SIGTERM
W0510 14:52:48.185984  672413 api.py:513] Closing process 675172 via signal SIGTERM
W0510 14:52:48.186013  672413 api.py:513] Closing process 675174 via signal SIGTERM
# <---- ^^^ ??? everything runs successfully but child still SIGTERM'ed? ^^^ --->

I0510 14:52:48.229119  672413 api.py:877] [main] worker group successfully finished. Waiting 300 seconds for other agents to finish.
I0510 14:52:48.229161  672413 api.py:922] Local worker group finished (WorkerState.SUCCEEDED). Waiting 300 seconds for other agents to finish
I0510 14:52:48.229395  672413 api.py:936] Done waiting for other agents. Elapsed: 0.0001709461212158203 seconds
I0510 14:52:48.257544  672413 dynamic_rendezvous.py:1131] The node 'localhost_672413_0' has closed the rendezvous 'torchrun_qpfd'.
I0510 14:52:48.568198  672413 distributed.py:200] Deleting temp log directory: /tmp/torchrun_udgp8zoq
I0510 14:52:48.568989  672413 distributed.py:202] Finished running `main`
```

Root Cause
------------------

I noticed that this was due to the incorrect usage of `torch.multiprocessing.ProcessContext.join()` in `torch.distributed.elastic.multiprocessing.api.MultiprocessingContext`.

`torch.multiprocessing.ProcessContext.join()` does not actually wait for ALL child procs to exit, but rather waits for **at-least-one** child proc to exit. If only a subset of the child procs have exited, it returns `False` and if all child procs have exited it returns `True`.

`torch.distributed.elastic.multiprocessing.api.MultiprocessingContext` was assuming that `torch.multiprocessing.ProcessContext.join()` blocks indefinitely until all child procs have exited.

Fix
---------

The fix is simple, just loop, while continuing to call `pc.join()` until it returns `True`

> **NOTE**: that the indefinite blocking is NOT an issue since by the time `torch.distributed.elastic.multiprocessing.api.MultiprocessingContext` calls `pc.join()` it already did all the checking to validate that the entrypoint functions either return successfully or that one of them has failed. So we are really just waiting for the unix process to exit after running the entrypoint function.

> **NOTE**: since `pc.join()` already blocks until at-least-one child proc exits, there is no need to add a polling interval in the body of the loop and the debug logging will show at most `nproc_per_node` times so no log spamming is observed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125969
Approved by: https://github.com/d4l3k
2024-05-15 00:13:08 +00:00
Aaron Gokaslan
1dd42e42c4 [BE]: Try TCH autofixes on torch/ (#125536)
Tries TCH autofixes and see what breaks

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125536
Approved by: https://github.com/ezyang
2024-05-05 23:13:59 +00:00
Xuehai Pan
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
Chirag Pandya
b6201a60c5 [BE] minor logging cleanup in distributed (#122921)
Summary:
    Minor logging cleanup in distributed library
    1. Don't use "f" formatted strings - address linter issues.
    2. Nits: Make use of unused `e` (error) in a few logs.
    3. Change info->debug as asked in issue #113545
    4. Nit: rename log -> logger in a few files for consistency
    5. Fix a linter error.

    Test Plan:
    1. Local build passes.
    2. Linter is happy.

    Reviewers: wanchaol

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122921
Approved by: https://github.com/wanchaol
2024-03-29 03:34:01 +00:00
Cheng Ni
9bff1599b6 [Torch Elastic][Draft] Refactor SubprocessHandler to separate module for easier subclass (#120373)
Summary:
## No Functional Change
- Refactor Subprocess Handler into a separate folder for easier subclassing
- SubprocessHandler
    - added `local_rank_id` in `SubprocessHandler` to make it available as a field in the class
    - pass in `local_rank_id` from subprocess start

Test Plan: No functional changes.

Differential Revision: D54038627

#suppress-api-compatibility-check

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120373
Approved by: https://github.com/kurman
2024-03-08 01:37:34 +00:00
Kurman Karabukaev
360761f7d0 [Torchelasic] Create root log directory by default (#121257)
Summary:
After refactoring in https://github.com/pytorch/pytorch/pull/120691, default behavior unintentionally was changes from creating tempdir for logging to not capturing any logs by torch Elastic Agent.

Reverting the behavior to:
- making tempdir when log dir is not specified
- allowing non-empty root log dir
    - Note: in case attempt folder exists, it will be pruned here: https://github.com/pytorch/pytorch/blob/main/torch/distributed/elastic/multiprocessing/api.py#L294

Differential Revision: D54531851

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121257
Approved by: https://github.com/d4l3k
2024-03-06 18:50:38 +00:00
Kurman Karabukaev
b0cfa96e82 [Torchelastic][Logging] Pluggable logsspecs using python entrypoints and option to specify one by name. (#120942)
Summary:
Expose an option to users to specify name of the LogsSpec implementation to use.
- Has to be defined in entrypoints under `torchrun.logs_specs` group.
- Must implement LogsSpec defined in prior PR/diff.

Test Plan: unit test+local tests

Reviewed By: ezyang

Differential Revision: D54180838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120942
Approved by: https://github.com/ezyang
2024-03-02 08:07:52 +00:00
Kurman Karabukaev
67d3e4f2a2 [TorchElastic] Refactoring to support non-default logging strategy (#120691)
Summary:
Pulling out logging parameters into a logging specs that can be overridden (follow-up changes on possible mechanism)

Why?
Right now the logging approach is quite rigid:
- Requires for log directory to exist and not be empty
- Will create tempdir otherwise,
- Creates subdir for a run
- creates subdir for each attempt
- creates files named as stdout.log, stderr.log, error.json

In some instances some of the users would like to customize the behavior including file names based on context. And we do have right now a mechanism to template multiplexed teed output prefix.

With current changes, users can create custom log spec that can use env variables to change the behavior.

Notes:
Made `LaunchConf.logs_specs` as an optional field that will be bound to `DefaultLogsSpecs` instance. There are large number of clients (code) that use the API directly without using torchrun API. For those cases, we have to explicitly pass LogSpecs implementation if we would like to override the implementation. For the regular torchrun users, we can use pluggable approach proposed in the follow up change.

Test Plan: CI + unit tests

Differential Revision: D54176265

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120691
Approved by: https://github.com/ezyang
2024-02-29 20:59:17 +00:00