Commit Graph

17 Commits

Author SHA1 Message Date
Dzmitry Huba
791ca80d3a Enable local tensor mode for DTensor attention and convolution tests (#166406)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166406
Approved by: https://github.com/ezyang
2025-10-30 02:48:02 +00:00
Dzmitry Huba
a51f877287 Enable local tensor mode for another set of DTensor tests (#166105)
Enable local tensor mode DTensor tests for the optimizers, op strategy,  matrix ops,
math ops, init ops, experimental ops, embedding ops, dynamic, convolution ops, main api.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166105
Approved by: https://github.com/ezyang
2025-10-27 23:58:24 +00:00
Maggie Moss
36a48e7e6d Fix existing pyrefly errors on main (#166312)
Silences existing errors on main to keep errors and noise from the type checker to a minimum

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166312
Approved by: https://github.com/Skylion007
2025-10-27 19:03:06 +00:00
Dzmitry Huba
86f9f1d0ab Enable local tensor model for DTensor redistribute tests (#166081)
Redistribute test exercise extensively various sharding schemes and
redistribution between them. These tests uncovered more edge cases
that were not supported by the local tensor primarily different flavors
of uneven sharding. In order to handle these cases this change implements
missing functional collectives and adds support for uneven sharding
case where sharding group (ranks) is larger than the size of the dimension
being sharded. In the latter case the "missing" shards are represented
by zero sized tensors so that the rest of the local tensor machinery
can stay oblivious to this special case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166081
Approved by: https://github.com/ezyang
2025-10-26 22:21:43 +00:00
Maggie Moss
8f80892359 Use correct pyrefly syntax in suppressions distributed/... (#166241)
Updates the pyrefy-ignores in the torch/distributed directory to use the correct syntax. No functional changes.

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166241
Approved by: https://github.com/oulgen
2025-10-26 04:16:41 +00:00
Maggie Moss
c7eee49525 Fix pyrefly ignores 1/n (#166239)
First diff adjusting the syntax for pyrefly: ignore suppressions so they only hide one class of type error.

Test:
lintrunner
pyrefly check

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166239
Approved by: https://github.com/oulgen
2025-10-26 00:44:10 +00:00
Yuanyuan Chen
9d0b77f4cd [10/N] Apply ruff UP035 rule (#165709)
This is a follow-up of #165515. ruff `UP035` rules are applied to  dynamo code to use Py 3.10+ typing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165709
Approved by: https://github.com/ezyang
2025-10-25 00:20:13 +00:00
Dzmitry Huba
0b1c462979 Making Numpy depedency in Local Tensor optional to fix broken Torchao CI (#165938)
In recent change LocalTensor introduced dependency on Numpy and has broken Torchao CI.
This dependency cna be made optional and required only when Local Tensor is used.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165938
Approved by: https://github.com/atalman
2025-10-21 01:46:53 +00:00
Dzmitry Huba
c4f6619330 Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)
- During op dispatch local tensor is supposed to collect rng state from CPU and CUDA
devices so that it can be reset before execution of the op for each such that ops
with randomness produces the same result for all ranks (note that we are planning a
separate change to add support of per rank rng state). Previously we relied on
op input arguments to deduce which devices to get rng state from. Which doesn't work
for factory functions such torch.randn. Hence this changes switches to uncondionally
collecting rng state from all devices.

- Fixing per rank specific computations in _MaskedPartial and Shard placements discovered
during test enablement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165716
Approved by: https://github.com/ezyang
2025-10-18 23:33:24 +00:00
PyTorch MergeBot
beb6b62e8c Revert "Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)"
This reverts commit 1b397420f2.

Reverted https://github.com/pytorch/pytorch/pull/165716 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165716#issuecomment-3418083391))
2025-10-18 09:15:49 +00:00
Dzmitry Huba
1b397420f2 Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)
- During op dispatch local tensor is supposed to collect rng state from CPU and CUDA
devices so that it can be reset before execution of the op for each such that ops
with randomness produces the same result for all ranks (note that we are planning a
separate change to add support of per rank rng state). Previously we relied on
op input arguments to deduce which devices to get rng state from. Which doesn't work
for factory functions such torch.randn. Hence this changes switches to uncondionally
collecting rng state from all devices.

- Fixing per rank specific computations in _MaskedPartial and Shard placements discovered
during test enablement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165716
Approved by: https://github.com/ezyang
2025-10-17 23:28:22 +00:00
Luca Wehrstedt
58879bfafa [DeviceMesh] Prefer using _layout over _mesh for all sorts of things (#165554)
The goal of this PR is to avoid storing the explicit `mesh` Tensor inside each DeviceMesh, and instead compute it on-the-fly when the end user needs it, and try to replace all of its internal usages with `_layout` and the newly-introduced `_global_rank_permutation` Tensor. The name of this attribute is up for debate. The advantage of the `_global_rank_permutation` Tensor is that it is _the same_ Tensor for the root mesh and all its children, so it doesn't need to be copied/reallocated.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165554
Approved by: https://github.com/fduwjj
2025-10-17 17:57:51 +00:00
Dzmitry Huba
2cd5fd1588 Enable local tensor mode on DTensor view ops test (#165596)
While enabling this test discovered lack of support for sub meshes. Added limited support
for sub meshes by properly computing rank coordinates for a given sub mesh. The implementation
follows similar approach to collectives. We infer all sub meshes for the given dimensions and
compute each rank's coordinates with respect to is sub mesh.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165596
Approved by: https://github.com/ezyang
2025-10-16 20:52:06 +00:00
Maggie Moss
d795fb225a [RFC] Add pyrefly to lintrunner (#165179)
This will add pyrefly to lint runner as a warning only - and allow us to collect feedback about the tool before switching to pyrefly as the main type checker.

References the steps outlined here: : https://github.com/pytorch/pytorch/issues/163283:

test plan:
`lintrunner init`
`lintrunner`
confirm when pyrefly errors are present results look like: https://gist.github.com/maggiemoss/e6cb2d015dd1ded560ae1329098cf33f

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165179
Approved by: https://github.com/ezyang
2025-10-16 20:07:09 +00:00
Dzmitry Huba
01738a3fea Continue local tensor mode enablement for DTensor tests (#165451)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165451
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-10-14 21:20:54 +00:00
Dzmitry Huba
5fbf93b774 Introduce automatic wrapper to run DTensor tests under local tensor mode (#165383)
The wrapper enable to share test body implementation while eliminating need test class by hand. As an example, this change converts the whole DTensorTest to use local tensor mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165383
Approved by: https://github.com/ezyang
2025-10-14 06:08:03 +00:00
Dzmitry Huba
5e58420dff LocalTensor (#164537)
A LocalTensor is a tensor subclass which simulates a tensor that is
distributed across SPMD ranks.  A LocalTensor might be size N, but in fact
there are world_size shards/replicas of it stored internally.  When you do a
plain PyTorch operation on it, we apply the operation to each shard; when you
do a collective, we do the mathematically equivalent operation on the local
shards.  A LocalTensor is associated with a list of ranks which specify
which ranks it holds local tensors for.

NB, this is NOT a DataParallel like abstraction where you can run operations
on multiple different GPUs. It is intended purely for *debugging* purposes,
the overhead is almost certainly too high to keep eight GPUs (even the C++
autograd needs multithreading to keep up!)  (It might potentially be possible
to trace through this with torch.compile and then compile it with CUDA graphs
but this is currently a non-goal.)

In order to handle MPMD, we provide a helper decorator that allows you to
run a function with no side effects for each LocalTensor shard and combine
results back into LocalTensor or LocalIntNode.

Note: This PR convert all DTensor ops and some DTensor tests to illustrate
intended usage and ensure conrrectness. In subsequent PR more tests will be
converted. DUring test conversion we aim to share as much as possible of
test logic between multi-process / multi-threaded and local tensor tests.
We would like to developers to be able to run both flavors of the tests.

Note: This work is based on the original proposal
by @ezyang (WIP PR https://github.com/pytorch/pytorch/pull/162753).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164537
Approved by: https://github.com/ezyang
2025-10-12 20:06:41 +00:00