Fixes#161943
## The Fix
I implemented a recursive unwrapping helper function in the `tensor_to_list.cpp` file that looks for wrapped tensors and unwraps them. The recursive implementation was needed for multi-level gradTrackingTensors.
Let me know if there is any more suggestions on fixing this issue!
@guilhermeleobas @KimbingNg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165184
Approved by: https://github.com/zou3519
Fixes#89034
Updated tensor_to_numpy() function in tensor_numpy.cpp to handle ZeroTensors by throwing an error if force=False and returning an array full of zeros if force=True.
@ngimel, I just saw that you mentioned PyTorch is not too concerned with this issue but I had already worked on it so I figured I would push it anyways and see what you thought. Feel free to close the PR if you think it is not worth merging.
@albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164487
Approved by: https://github.com/izaitsevfb
Python 3.13 added PyObject_GetOptionalAttrString. I'm not 100% certain that it is strictly better than the old approach in all cases, but based on documentation/comments it seems to be meant for this type of use, and it's faster when I profile torchtitan training (which gets to the "check for the `__torch_function__` attr on some object" part of maybe_has_torch_function frequently enough to notice, but wastes a bunch of time generating exceptions that we then suppressed here).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164624
Approved by: https://github.com/Skylion007
Fixes#89034
Updated tensor_to_numpy() function in tensor_numpy.cpp to handle ZeroTensors by throwing an error if force=False and returning an array full of zeros if force=True.
@ngimel, I just saw that you mentioned PyTorch is not too concerned with this issue but I had already worked on it so I figured I would push it anyways and see what you thought. Feel free to close the PR if you think it is not worth merging.
@albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164487
Approved by: https://github.com/ngimel, https://github.com/albanD
Initial prototype for dynamic int inputs, allows users to run with `torch.compile(f)(DynamicInt(4))`, compiling dynamically and using the underlying hint at runtime.
Current behavior:
- Also works in eager (mostly by subclassing int), as scalar input to torch functions, or numpy/math/etc. For example, `x = DynamicInt(3); torch.randn(x); torch.add(y, z, alpha=x); np.arange(x)` all act as if x = 3.
- Behavior for arithmetic ops is to return new DynamicInts rather than static ints; `DynamicInt(3) * 2 = DynamicInt(6)`. This is via SymNode magic methods, but coverage might not be 100% - for example, I had to explicitly override floordiv to avoid int casting. This is not necessarily the case for non-magic method ops (e.g. `math.cos(x)`). The alternative here is to int cast on all operations, but I opted for this for dynamism propagation in non-compiled regions.
- Doesn't ban fullgraph=False; DynamicInt objects might be leaked back to the user, but I guess this is fine, because they can be casted to ints when needed?
- Dynamo only allocates one symbol per DynamicInt; specifying the same DynamicInt for multiple inputs leads to input deduplication, and a guard installed.
- We don't raise on int specialization (in allowlist/maybe_mark_dynamic style) - but an easy change if needed.
- DynamicInts as nn.Module attributes are handled.
- We don't guard on the DynamicInt id, e.g. users can do the following without recompiling (maybe we should guard?)
```python
x = DynamicInt(4)
f(x)
f(1)
f(DynamicInt(3)) # same as f(3)
```
Follow-up work:
- Specifying shape constraints, either at the int-level, e.g.
```python
DynamicInt(64, name="s0", constraints=["s0 % 32 == 0", "s0 <= 1024"]
```
or at the compilation level, e.g. something like
```python
s0 = DynamicInt(64, name="s0")
s1 = DynamicInt(128, name="s1")
with some_compiler_config.dynamic_int_constraints(["s1 == 2*s0", "s0 % 32 == 0"]):
f(s0, s1)
```
This should subsume the need for specifying derived SymInts?
- SymFloat support - currently it seems backed floats are specialized by the tensorify float pass, and there's no handling in inductor.
- Propagating dynamism in tensor constructors, e.g. `x = DynamicInt(4); torch.randn(x)` could annotate `_dynamo_dynamic_indices`.
Differential Revision: D81698719
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162194
Approved by: https://github.com/bobrenjc93
Summary: This PR introduces shape guards to export. Previously only value ranges, equalities, and specializations would be tracked for symbolic expressions, and we had a forward hook to check them. Instead now we create a function to check shape guards and call it in the exported program.
Test Plan:
updated several tests
Rollback Plan:
Differential Revision: D80713603
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161178
Approved by: https://github.com/tugsbayasgalan
`vmap(F.embedding)(DTensor, DTensor)` was failing because F.embedding's
batching rule generates a new tensor via at::arange, at::arange
generates a regular tensor, and DTensor rightfully errors on mixed
DTensor-regular Tensor operations.
This PR fixes the problem by activating DTensor implicit replication on
just the at::arange and the subsequent add operation.
In order to accomplish this I move the DTensor implicit replication flag
to C++ (most batching rules are in C++).
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162117
Approved by: https://github.com/bdhirsh
We basically follow the same pattern we do for tensor arguments. The major downside is we now have to traverse the entirety of the int list / etc where previously we didn't have. Benchmark suggests 2% regression for relevant things.
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160256
Approved by: https://github.com/albanD
Summary:
Fixes#160749
For a model like
```
class M(torch.nn.Module):
def forward(self, x):
s = torch.sin(x)
z = 1j * s
return z
```
Its graph will be
```
graph():
%x : [num_users=1] = placeholder[target=x]
%sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%x,), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sin, 1j), kwargs = {})
return (mul,)
```
`1j` will appear as a constant complex argument in the `aten.mul`
Test Plan:
buck2 run mode/dev-nosan caffe2/test:test_export -- -r test_complex_constant
Rollback Plan:
Differential Revision: D80672323
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161517
Approved by: https://github.com/angelayi
Summary:
We split the refactoring in two parts for forward compatibility concerns
First, we land the deserialization (loading part)
Then, we land the serialization (saving part)
Save weights and constants as individual files in PT2 archive. Each weight/constant will be saved as raw bytes, unless it is a custom object (TorchBind object) or a non-fake tensor subclass, for these two special cases we still save them using pickle.
The metadata of saved tensors along with the file name will be saved as `PayloadMeta`.
The mapping from FQN to `PayloadMeta` will be saved as `PayloadConfig` under `WEIGHTS_CONFIG_FORMAT` and `CONTANTS_CONFIG_FORMAT`
This changes the serialization in python side when calling `torch.export.save()`.
For deserialization in python `torch.export.load()`, we make it BC-safe by allowing loading legacy format weights/constants.
For deserialization in C++ `torch/nativert/ModelRunner.cpp`, we make this a BC breaking change as currently the OSS ModelRunner API is not being used.
The file structure
```
├── archive_format
├── archive_version
├── byteorder
├── .data
│ ├── serialization_id
│ └── version
├── data
│ ├── sample_inputs
│ │ └── model.pt
│ ├── constants
│ │ ├── tensor_0
│ │ ├── tensor_1
│ │ └── model_constants_config.json
│ └── weights
│ ├── weight_0
│ ├── weight_1
│ ├── weight_2
│ ├── weight_3
│ └── model_weights_config.json
└── models
└── model.json
```
Test Plan:
CI
Rollback Plan:
Differential Revision: D80035490
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160394
Approved by: https://github.com/SherlockNoMad
Summary:
Removed `Model`, it's not being used anywhere so it's safe.
Removed `tensor_paths` and `constant_paths` fields in `ExportedProgram`
- BC: when the current deserializer load a previously serialized EP (that comes with empty `tensor_paths` and `constant_paths`), it will just ignore those two fields
- FC: when the old deserializer load a newly serialized EP (that doesn't come with `tensor_paths` and `constant_paths`, it will also ignore those two fields in `_dict_to_dataclass()`
Differential Revision: D80725094
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161185
Approved by: https://github.com/SherlockNoMad
Summary:
In HF model rwkv, we have parameter mutation under inference mode which should be safe. This PR does multiple things to make sure it works:
1. We execute global autograd mutation while tracing so that we can actually trace through parameter inplace mutation
2. Add support for parameter mutation under inference mode in AOTAutograd
3. Add support for parameter mutation under inference mode in export.
Test Plan:
test
Rollback Plan:
Differential Revision: D79460136
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159661
Approved by: https://github.com/ydwu4
Adds `OperatorEntry::getComputedKernelForDispatchKey` which returns the KernelFunction corresponding to `OperatorEntry.dispatchTable_[dispatch_ix]` for a given dispatch key
- Specifically it returns a `SafeKernelFunction` that holds a `KernelToken`. This `KernelToken` is registered to the `KernelFunction` in `OperatorEntry.kernels_` and will be invalidated when the `KernelFunction` is destructed (i.e. when the `AnnotatedKernel` that holds this `KernelFunction` is removed from `kernels_`, which happens when the corresponding impl is deregistered).
- `SafeKernelFunction` can be called via `callBoxed`, the validity of the token will be checked before this happens
- `SafeKernelFunction` is pybinded and `getComputedKernelForDispatchKey` is exposed to the frontend ia `torch.library.get_kernel`
Related to https://github.com/pytorch/pytorch/issues/155330
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158393
Approved by: https://github.com/albanD
Summary:
Model could have multiple ExportedPrograms
- for different methods. They can have different weights.
- for different delegates. They can also have different weights.
For this reason, we make weight per ExportedProgram.
Also, we cleanup Model, and Program. IIUC, Model and Program are not used anywhere, so it's ok to make BC breaking change.
Test Plan:
CI
Rollback Plan:
Differential Revision: D79917395
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160220
Approved by: https://github.com/angelayi, https://github.com/dolpm, https://github.com/jingsh
Summary:
This field is not used today, and it's not useful either.
The device allocation is configured at model loading time, specified by user.
It shouldn't be part of the model definition.
Test Plan:
CI
Rollback Plan:
Differential Revision: D79385513
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159653
Approved by: https://github.com/zhxchen17
This PR is a bit more involved but effectively works to drastically simplify PyObjectSlot and PyInterpreter.
1) For PyObjectSlot we now use a global pyinterpreter since there only is one. From here we change all of the call sites to rely on this assumption.
2) We also remove the "tags" of the PyInterpreter by deprecating `PyInterpreterStatus`.
For the reviewer, sadly it seems like `functorch/csrc/dim/dim.cpp` needed to get linted, so there is an unreadable amount of changes there. Fortunately, the only actual change in the file is as follows which just removes `getPyInterpreter()` from the `check_pyobj` call.
```
mpy::handle handle_from_tensor(Arena& A, TensorRef t) {
- // fast case: tensor is live in python
- std::optional<PyObject*> mb_obj =
- t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter(), /*ignore_hermetic_tls=*/false);
- if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
- return *mb_obj;
- }
- return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
-}
-}
+ // fast case: tensor is live in python
+ std::optional<PyObject*> mb_obj =
+ t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
+ /*ignore_hermetic_tls=*/false);
+ if (mb_obj.has_value() &&
+ !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
+ return *mb_obj;
+ }
+ return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
+}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158427
Approved by: https://github.com/albanD
This PR is part of the work to deprecate torch::deploy in OSS. Effectively it does 3 things to get started.
1. Remove test_deploy_interaction as we no longer need to worry about this
2. Remove all torch._running_with_deploy checks and use the False path always (surfaced 1)
3. Remove `USE_DEPLOY` and switch to the default path always
Note: MyPy does fail on a bunch of things here as a bunch of older files are touched. It may be better to fix these things on a separate PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158288
Approved by: https://github.com/albanD
This PR is part of the work to deprecate torch::deploy in OSS. Effectively it does 3 things to get started.
1. Remove test_deploy_interaction as we no longer need to worry about this
2. Remove all torch._running_with_deploy checks and use the False path always (surfaced 1)
3. Remove `USE_DEPLOY` and switch to the default path always
Note: MyPy does fail on a bunch of things here as a bunch of older files are touched. It may be better to fix these things on a separate PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158288
Approved by: https://github.com/albanD
This PR is a bit more involved but effectively works to drastically simplify PyObjectSlot and PyInterpreter.
1) For PyObjectSlot we now use a global pyinterpreter since there only is one. From here we change all of the call sites to rely on this assumption.
2) We also remove the "tags" of the PyInterpreter by deprecating `PyInterpreterStatus`.
For the reviewer, sadly it seems like `functorch/csrc/dim/dim.cpp` needed to get linted, so there is an unreadable amount of changes there. Fortunately, the only actual change in the file is as follows which just removes `getPyInterpreter()` from the `check_pyobj` call.
```
mpy::handle handle_from_tensor(Arena& A, TensorRef t) {
- // fast case: tensor is live in python
- std::optional<PyObject*> mb_obj =
- t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter(), /*ignore_hermetic_tls=*/false);
- if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
- return *mb_obj;
- }
- return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
-}
-}
+ // fast case: tensor is live in python
+ std::optional<PyObject*> mb_obj =
+ t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
+ /*ignore_hermetic_tls=*/false);
+ if (mb_obj.has_value() &&
+ !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
+ return *mb_obj;
+ }
+ return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
+}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158427
Approved by: https://github.com/albanD
This PR is part of the work to deprecate torch::deploy in OSS. Effectively it does 3 things to get started.
1. Remove test_deploy_interaction as we no longer need to worry about this
2. Remove all torch._running_with_deploy checks and use the False path always (surfaced 1)
3. Remove `USE_DEPLOY` and switch to the default path always
Note: MyPy does fail on a bunch of things here as a bunch of older files are touched. It may be better to fix these things on a separate PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158288
Approved by: https://github.com/albanD