Not only is this change usually shorter and more readable, it also can yield better performance. size() is not always a constant time operation (such as on LinkedLists), but empty() always is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93236
Approved by: https://github.com/malfet
As we live in C++17 world
This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
Summary:
[Comment](https://github.com/pytorch/pytorch/pull/62445/files#r680132022) claims, it got added for consistency with top level CMakeLists.txt, but `-Wno-unused-variable` is not mentioned there.
Modify violations in 50+ files that were added in the interim by either removing unused variables, or decorating the code with `C10_UNUSED` if local variable is likely used to extend object lifetime until the end of the block.
Caused preventable revert in https://github.com/pytorch/pytorch/pull/72633#issuecomment-1092300787
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75538
Reviewed By: anjali411
Differential Revision: D35747333
Pulled By: malfet
fbshipit-source-id: 3fc5828e44a4c05ba0e89e92613e6ebbdb260626
(cherry picked from commit c179fba21cfa2a0093fad50ccad5a22dd7cff52c)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72390
This class didn't add much value and only caused more boilerplate code.
This change removes the class and updates all the use cases with
uses of `ExprHandle`.
A side effect of this change is different names in loop variables, which
caused massive mechanical changes in our tests.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D34030296
Pulled By: ZolotukhinM
fbshipit-source-id: 2ba4e313506a43ab129a10d99e72b638b7d40108
(cherry picked from commit c2ec46a058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72478
aten::_autocast_to_reduced_precision and `aten::_autocast_to_full_precision are essentially just aten::to operations, so they can be fused the same way aten::to is fused.
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D34057522
Pulled By: davidberard98
fbshipit-source-id: f3b53641415702a4ac56460587801b9c76d81b3c
(cherry picked from commit 838ce5542e)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71186
So far we've only supported scalar inputs, but couldn't handle scalar outputs
or intermediates. This PR adds it.
Scalar outputs are returned as 0-dim tensors. If the kernel is invoked on a
stack of IValues, we correctly convert the results to scalar IValues when
needed. If the kernel is invoked with a vector of void* pointers, everything
works out of the box without any conversions.
Lowerings for scalar operators are a bit tricky. Usual lowerings return a pair
<Buf, Stmt> (aka Tensor), but for scalar operators we also want to have the
corresponding Var that the lowering function supposedly creates (in theory we
could just use Loads and Stores, but I'm worried it can affect performance as
there is no guarantee this will be optimized by LLVM). So, what we do here to
work around this is we return a fake buf + stmt that sets the corresponding
var. Then outside of the lowering we create a real buffer and generate a Store
to it with the value from the variable we passed as the base handle of the fake
buf. This real buffer is then treated as usual by the rest of the system and we
can use it if we need to return this scalar value as a kernel output. If we do
not need to return it, then the Store will be deleted by the DCE pass.
Differential Revision:
D33539324
D33539324
Test Plan: Imported from OSS
Reviewed By: navahgar
Pulled By: ZolotukhinM
fbshipit-source-id: ab4524b9820ce204f106effcf6232ed33d4ee223
(cherry picked from commit 7faa0939f0)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70306
USE_XNNPACK is the right one to enable lowering to prepacked xnnpack based ops
Test Plan: CI
Reviewed By: ZolotukhinM, priyaramani
Differential Revision: D33279375
fbshipit-source-id: d19ded5643f487f7b58c54a860ad39c8d484ed05