Commit Graph

45 Commits

Author SHA1 Message Date
FFFrog
af0bc75460 Remove deprecated alias macro(1/3) (#137556)
**Detailed Descriptions:**
- Remove AT_ERROR Macro

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137556
Approved by: https://github.com/ezyang
2024-10-21 17:32:32 +00:00
cyy
7bbdf87517 [22/N] Fix clang-tidy warnings in jit (#134829)
Follows  #134537

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134829
Approved by: https://github.com/ezyang
2024-09-19 19:24:42 +00:00
cyy
bfeb45e46b [17/N] Fix clang-tidy warnings in jit (#132753)
Follows #132604
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132753
Approved by: https://github.com/Skylion007
2024-08-07 03:47:54 +00:00
Aaron Gokaslan
e57a694d77 Add some missing moves to torch jit passes (#92317)
Add some missing moves in torch/jit/passes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92317
Approved by: https://github.com/ezyang
2023-01-22 16:33:08 +00:00
Nikita Shulga
53a163a015 [ONNX] Export nn.Module call as ONNX local function (#63589) (#66140)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66140

* Add new argument to export api to enable users specifying `nn.Module` classes that they wish to be exported as local function in ONNX model.
* Refactor `torch/csrc/jit/serialization/export.cpp`, and remove redundant `EncoderBase` class.
* ~~Contains changes from #63268~~
* Depends on #63716 to update onnx submodule.

Test Plan: Imported from OSS

Reviewed By: jansel

Differential Revision: D31424098

fbshipit-source-id: c949d0b01c206c30b4182c2dd1a5b90e32b7a0d3

Co-authored-by: BowenBao <bowbao@microsoft.com>
2021-10-22 13:44:56 -07:00
Scott Wolchok
176d3c6fb4 [PyTorch] Fix many Tuple::elements() callsites (#64065)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64065

It is only safe to mutate Tuple elements if you are the sole owner
of the tuple. The most efficient way to do this, then, is
`std::move(*std::move(tupleIValue).toTuple()).elements()` (the
innermost move allows `IValue::toTuple()` to avoid a refcount bump and
the outermost move allows the element vector to be moved out of the
tuple), but many callsites write simply
`tupleIValue.toTuple().elements()`, which incurs many extra refcount
bumps.

ghstack-source-id: 139468088

Test Plan: CI

Reviewed By: ezyang

Differential Revision: D30592621

fbshipit-source-id: e8312de866de09b9ea2a62e5128cbf403ee16f09
2021-10-01 11:36:05 -07:00
Matej Sladek
f807229fd4 [ONNX] add support for prim::Unitialized in lower_tuples pass (#56912)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/56911

Code from issue generates this Torchscript:
```
graph(%self : __torch__.MyModule,
      %t.1 : Tensor):
  %12 : None = prim::Constant()
  %7 : str = prim::Constant[value="Negative input"]() # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:11:28
  %3 : int = prim::Constant[value=0]() # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:10:15
  %9 : int = prim::Constant[value=5]() # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:13:31
  %33 : (Tensor, Tensor) = prim::Uninitialized()
  %4 : Tensor = aten::lt(%t.1, %3) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:10:11
  %6 : bool = aten::Bool(%4) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:10:11
  %34 : (Tensor, Tensor) = prim::If(%6) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:10:8
    block0():
       = prim::RaiseException(%7) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:11:12
      -> (%33)
    block1():
      %11 : int[] = prim::ListConstruct(%9)
      %16 : Tensor = aten::zeros(%11, %12, %12, %12, %12) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:13:19
      %18 : int[] = prim::ListConstruct(%9)
      %23 : Tensor = aten::zeros(%18, %12, %12, %12, %12) # /mnt/nvdl/usr/msladek/notes/python_code/unitialized.py:13:35
      %24 : (Tensor, Tensor) = prim::TupleConstruct(%16, %23)
      -> (%24)
  return (%34)
```

Problem is that onnx exporter during lower_tuples pass doesn't support forwarding of tuples in prim::Unitialized.
Solution is:
1. add prim::Unitialized to supported_op in lower_tuples pass
1. As prim::Unitialized has now multiple outputs, we should call giveFreshAlias for every output

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56912

Reviewed By: nikithamalgifb

Differential Revision: D29837200

Pulled By: SplitInfinity

fbshipit-source-id: 321fae6fe52b1523df5653dbb9ea73b998ef1cda
2021-08-10 16:21:16 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
Gary Miguel
dec5aa2260 [JIT] clean up (#60390)
Summary:
* Minor: spelling, grammar.
* Add calls to `GRAPH_DUMP()` where they were missing.
* Add or expand a few comments.
* Move a few comments to seemingly more appropriate spots.
* In canonicalize_graph_fuser_ops.cpp inline `runnableInputs()` since it
  was only called in one place and had a misleading comment and
  confusing name.
* In `PeepholeOptimizeImpl::optimizeBlock()`, set `changed = true;` when
  removing `aten::is_complex`. Pretty sure its absence was a bug.
* Delete unused `_jit_pass_remove_inplace_ops` and and its
  implementation `RemoveInplaceOps()`.
* In `preprocessCaffe2Ops()`, remove redundant check for nested optional
  types. It was already checked in `checkONNXCompatibility()`.
* In `EncoderBase::AddAttribute`, log the unexpected attribute kind.
  I don't remember the repro case now but I did hit this error at some
  point and this additional logging made it easier to understand.
* In `fuseConvBatchNorm()` in eval_peephole.cpp, consistently use
  camelCase instead of snake_case for local variables.
* Add curly braces around the bodies of if and loops.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60390

Reviewed By: Krovatkin

Differential Revision: D29523283

Pulled By: SplitInfinity

fbshipit-source-id: 4e16c5648616f53da07d68dab7fdf252e06a0752
2021-07-09 16:28:27 -07:00
Richard Barnes
3979cb0656 irange for size_t (#55320)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55320

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27572577

fbshipit-source-id: 97710fd2bb1303006b05828a0d1343b0b59ccb03
2021-06-03 01:04:13 -07:00
BowenBao
b27fc0ff85 [ONNX] Improve lower tuples and handle control flow (#57650) (#58694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58694

Improving the logic for finding tuple patterns within control flow.
Also fixes: https://github.com/pytorch/pytorch/issues/56914

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D28714806

Pulled By: SplitInfinity

fbshipit-source-id: 1552100cf9cc88e6f58df2e90758e8898ba0a9b3

Co-authored-by: neginraoof <neginmr@utexas.edu>
2021-05-27 12:06:40 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Mike Ruberry
c0ac0fef4e Revert D27448156: irange for size_t
Test Plan: revert-hammer

Differential Revision:
D27448156 (041b4431b2)

Original commit changeset: 585da57d4de9

fbshipit-source-id: 8e047c29f391c0166e0a1a87c3fb2a0854377365
2021-04-03 19:14:00 -07:00
Richard Barnes
041b4431b2 irange for size_t (#55163)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27448156

fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
2021-04-02 23:22:29 -07:00
Andres Suarez
8530c65e25 [codemod][fbcode/caffe2] Apply clang-format update fixes
Test Plan: Sandcastle and visual inspection.

Reviewed By: igorsugak

Differential Revision: D25849205

fbshipit-source-id: ef664c1ad4b3ee92d5c020a5511b4ef9837a09a0
2021-01-09 14:37:36 -08:00
neginraoof
3d7c22a2ce [ONNX] Enable new scripting passes for functionalization and remove_mutation (#43791)
Summary:
Duplicate of https://github.com/pytorch/pytorch/issues/41413
This PR initiates the process of updating the torchsciprt backend interface used by ONNX exporter.

Replace jit lower graph pass by freeze module pass

Enable ScriptModule tests for ONNX operator tests (ORT backend) and model tests by default.

Replace jit remove_inplace_ops pass with remove_mutation and consolidation all passes for handling inplace ops.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43791

Reviewed By: houseroad

Differential Revision: D23421872

Pulled By: bzinodev

fbshipit-source-id: a98710c45ee905748ec58385e2a232de2486331b
2020-09-04 15:21:45 -07:00
BowenBao
afa489dea9 [ONNX] Enable lower_tuple pass for custom layer (#41548)
Summary:
Custom layer by `torch.autograd.Function` appears in the lower_tuple as `prim::PythonOp`. Adding this op type to the allowed list to enable lower_tuple pass. This helps with exporting custom layer with tuple outputs.

E.g.
```python
import torch
class CustomFunction(torch.autograd.Function):
    staticmethod
    def symbolic(g, input):
        return g.op('CustomNamespace::Custom', input, outputs=2)
    staticmethod
    def forward(ctx, input):
        return input, input
class Custom(torch.nn.Module):
    def forward(self, input):
        return CustomFunction.apply(input)

model = Custom()
batch = torch.FloatTensor(1, 3)
torch.onnx.export(model, batch, "test.onnx", verbose=True)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41548

Reviewed By: glaringlee

Differential Revision: D22926143

Pulled By: bzinodev

fbshipit-source-id: ce14d1d3c70a920154a8235d635ab31ddf0c46f3
2020-08-04 16:22:39 -07:00
Meghan Lele
fbd960801a [JIT] Replace use of "whitelist" in lower_tuples pass (#41460)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41460

**Test Plan**
Continuous integration.

**Fixes**
This commit partially addresses #41443.

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D22544272

Pulled By: SplitInfinity

fbshipit-source-id: b46940d1e24f81756daaace260bad7a1feda1e8f
2020-07-17 11:33:14 -07:00
Meghan Lele
6384c2d81b [JIT] clang-format JIT code (#35115)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35115

This commit runs the newly added tools/clang_format.py on the JIT
codebase and includes all of the formatting changes thus produced.

Testing:
Ran the script, CI.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D20568523

Pulled By: SplitInfinity

fbshipit-source-id: e09bdb982ccf090eecfb7c7b461b8d0681eef82b
2020-03-26 11:24:51 -07:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Elias Ellison
38d122eca9 implement tuple constants (#31841)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31841

Add Tuple Constants to JIT. The constraint here is that all elements of a tuple must themself be insertable as a a constant. Previously tuples were special cased in constant propagation, but now that there are more passes that are inserted constants, such as freezing, we should just have tuples be representable as constants.

Test Plan: Imported from OSS

Differential Revision: D19439514

Pulled By: eellison

fbshipit-source-id: 3810ba08ee349fa5598f4b53ea64525996637b1a
2020-01-22 12:13:31 -08:00
James Reed
309b28ee3a Trace module calls
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29261

Test Plan: Imported from OSS

Differential Revision: D18343363

Pulled By: jamesr66a

fbshipit-source-id: 0c6394205e2c0ea8708028d20df83fe17b466ff4
2019-11-06 15:05:49 -08:00
Lu Fang
22c169fb9c Improve the error message for ONNX export (#23317)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23317

Print out the kind type when fail to export

Reviewed By: zrphercule

Differential Revision: D16462641

fbshipit-source-id: 27157c0bd597362f90ac8cfb33e1808bac0ec48b
2019-07-24 15:03:05 -07:00
Elias Ellison
881adb5bcd fix tuple indexing bug (#21521)
Summary:
lower tuples pass didn't check bounds for tuple index
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21521

Differential Revision: D15716813

Pulled By: eellison

fbshipit-source-id: 8eead98c2c63118e7d24a8c8bf6184b02afb7dcd
2019-06-07 11:17:59 -07:00
Zachary DeVito
3083c71cde First class functions in IR, inlined eagerly (#21052)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21052
ghimport-source-id: cc476b9cc301967dde5de6212ca144cdb252e84c

Differential Revision: D15533353

Pulled By: zdevito

fbshipit-source-id: 4d25461969cfcc9e5f641d585584cc100c7b34ae
2019-05-29 23:04:18 -07:00
Edward Yang
97e1f07ffc Replace AT_CHECK with TORCH_CHECK [shard 10/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20436

Reviewed By: jerryzh168

Differential Revision: D15318926

fbshipit-source-id: 71a43070cc50cc174f703ebc595f1d87c6fc1e91
2019-05-15 07:35:37 -07:00
Zachary DeVito
3afd99680c Remove SourceLocation (respin) (#20333)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20333
ghimport-source-id: e64075bb82067224463e9955d10bd13967d1975d

Differential Revision: D15284081

Pulled By: zdevito

fbshipit-source-id: ac26ae48392b9daff08f460529c06af8f4e4722a
2019-05-09 16:17:33 -07:00
Wanchao Liang
e870b11ae6 Revert D15275731: Remote SourceLocation
Differential Revision:
D15275731

Original commit changeset: f4da178c3137

fbshipit-source-id: 830b79735eb2dadc4795b5aae407826bf20ef121
2019-05-09 13:07:11 -07:00
Zachary DeVito
eca91de5d2 Remote SourceLocation (#20300)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20300
ghimport-source-id: 06f606c4db3b70b1d2ed9f6ed4542c3f703c4e17

Differential Revision: D15275731

Pulled By: zdevito

fbshipit-source-id: f4da178c31372c2264feb9f99476b9c9aa66c1f2
2019-05-09 11:48:29 -07:00
Elias Ellison
26f5275644 Index into a tuple with non constant integer (#20081)
Summary:
Fix for https://github.com/pytorch/pytorch/issues/16962

This needs fixing because we turn lists into tuples when constantify a module, so indexing into a Tuple of one type with a non-constant integer is quite common.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20081

Differential Revision: D15205893

Pulled By: eellison

fbshipit-source-id: 61d74ee071ad0aad98e46fe807d6f6cc5f6abd2f
2019-05-06 14:23:16 -07:00
Mikhail Zolotukhin
1905bbb01d Include ATen/core/functional.h directly instead of torch/csrc/utils/functional.h. (#16377)
Summary:
One more shim removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16377

Differential Revision: D13821816

Pulled By: ZolotukhinM

fbshipit-source-id: 007f014d404de51841437db7eef28367a2f6e46b
2019-01-30 14:02:34 -08:00
Mikhail Zolotukhin
47bf30661f Directly include headers from ATen.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16287

Differential Revision: D13792949

Pulled By: ZolotukhinM

fbshipit-source-id: d627d8dc469df048063c70d0b5b8d33fede809a3
2019-01-24 11:22:27 -08:00
Michael Suo
f636dc9276 clang format world (#15524)
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.

Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524

Differential Revision: D13547989

Pulled By: suo

fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
2018-12-26 06:55:01 -08:00
Ailing Zhang
6ab2e7442d Autograd using torchscript (#14604)
Summary:
This PR enables autodiff to use the forward/backward graph compiled from python code, instead of using symbolic gradients(modifying the original graph directly).

We put the map in a separate .h file for now to wait for the native_functions.yaml and derivatives.yaml merge. This should ideally go into native_functions.yaml eventually.

This PR should be enough to unblock us for now, we can start writing gradients for aten functions in python.

Differential Revision: D13494635

Pulled By: ailzhang

fbshipit-source-id: f8d51a15243ac46afd09d930c573ccdfcd9fdaaf
2018-12-18 19:10:57 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Michael Suo
b768db0810 Allow DCE to clean up some mutable ops (#14601)
Summary:
This PR makes DCE a little smarter in the presence of mutable ops. Previously mutable ops could never be cleaned up, now they can be cleaned up if we can prove there are no live uses of any alias sets that the op writes to.

This behavior is optional; if you pass DCE a block instead of a graph, it will do the same thing as before. Also changed `InlineAutographSubgraph` to use the common subgraph utils.

Tested on traced ResNet, and it gets rid of the dead code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14601

Differential Revision: D13309118

Pulled By: suo

fbshipit-source-id: dac2791e7d2ecf219ae717a2759b83c1e927f254
2018-12-03 13:31:08 -08:00
Elias Ellison
f9b7ce9c99 Add tuple indexing support for constant integers (#11492)
Summary:
Add support indexing tuples with constant integers by creating a new prim::TupleIndex operator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11492

Differential Revision: D9811996

Pulled By: eellison

fbshipit-source-id: a458c2522b3c81476252d920e27a8d6c7b9a036b
2018-10-23 17:52:03 -07:00
Zachary DeVito
6ce799edd6 Tuples/Lists can now be inputs/outputs to script and other simple fixes. (#10812)
Summary:
* Fix the necessary pathways so that tuples and lists can be inputs to the script.

* prevent linear algebra functions from being run in shape prop because
they frequently will error out for nonsense data.

* favor schema-driven python input conversion where possible.
remaining cases where we directly create Stacks without schema are
only for debugging

* Make the error messages when calling script/trace functions more pythonic

* Simplify FlattenTuples -- now that tuples are supported we can choose to only flatten tuples when needed. This may have to be revisited pending onnx test results, but is necessary for making tuple io work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10812

Differential Revision: D9477982

Pulled By: zdevito

fbshipit-source-id: ed06fc426e6ef6deb404602a26c435a7fc40ea0c
2018-08-27 14:40:40 -07:00
Wanchao Liang
b7b61a8eb4 Change expect, cast on Type to return shared pointers, make isSubtypeOf accept TypePtr (#9786)
Summary:
Follow up task of #9584.

Commit 1:

- change expect/cast to return shared pointers instead of raw pointer
- isSubtypeOf accept TypePtr instead. Use `x->isSubtypeOf(NumberType::get())` rather than `x->isSubtypeOf(*NumberType::get())`

Commit 2:

- to address enable_shared_from_this pitfalls, we make the constructor private and expose the factory method to make sure user can only create it using our factory method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9786

Reviewed By: zdevito

Differential Revision: D8980441

Pulled By: wanchaol

fbshipit-source-id: e5c923fc57a701014310e77cf29985b43bb25364
2018-07-26 18:09:45 -07:00
James Reed
0b16b03b98 Plumb type annotations through script compilation (new) (#9547)
Summary:
Supersedes https://github.com/pytorch/pytorch/pull/9405
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9547

Reviewed By: zdevito

Differential Revision: D8900327

Pulled By: jamesr66a

fbshipit-source-id: a00a94615af4fbaec98ee3ede0cb54bcfd9108dd
2018-07-25 17:10:14 -07:00
Peter Goldsborough
f62bc01dfe Remove TORCH_ASSERT (#9575)
Summary:
I got some tensor->variable conversion exceptions from `torch/csrc/autograd/variable.h`, which used the `TORCH_ASSERTM` macros instead of `AT_CHECK`, so they didn't have backtraces. This was such a substantial loss for debugability that I decided to update the whole codebase to use the backtrace-enabled ATen macros instead of `TORCH_ASSERT` and `JIT_ASSERT`, the latter having been an alias of the former.

ezyang apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9575

Differential Revision: D8924566

Pulled By: goldsborough

fbshipit-source-id: 7a4013b13eec9dbf024cef94cf49fca72f61d441
2018-07-24 18:10:06 -07:00
Adam Paszke
b9f575fc33 Remove legacy code from the JIT (#9323)
Summary:
In particular, get rid of backward tracing and CppOp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9323

Reviewed By: ezyang

Differential Revision: D8795935

Pulled By: apaszke

fbshipit-source-id: fb7a7eeee41902da35f2a8efd77262ca60fd6bbe
2018-07-11 10:25:38 -07:00
Adam Paszke
da654337e0
Add support for type annotations in Python functions (#7009) 2018-05-04 10:54:19 +02:00
Zachary DeVito
b8ada7380a
Tuple literal and cat support (#6691)
* Support list and tuple literals: Adds support for [a, b], (a, b) and "a, "

* Allow non-tensors to reach emitBuiltinCall, each SugaredValue::call
is now responsible for checking the types of its inputs.

Add support for calling cat with a tuple to emitBuiltinOp
2018-04-23 10:58:07 -07:00
Zachary DeVito
825ce7f196
[jit][script] Allow tuples to be re-assigned (#6538)
* Allow tuples to be re-assigned

This commit improves our support of tuples by making them more first-class.
In particular, it allows tuples to be re-assigned across loops and ifs.
It does this by making them first-class values in the Graph IR, and then
removing the tuples in a LowerTuples pass.

An alternative approach would have added more support for desugaring tuples
in the Environment object as they were emitted. Instead,
the current approach was chosen anticipating a future when tuples are
fully supported (including the interpreter). In that future, the current
code can be completly reused with the LowerTuples pass just becoming
a optimization that removes unneeded tuple allocations.
2018-04-13 17:34:50 -07:00