Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35115
This commit runs the newly added tools/clang_format.py on the JIT
codebase and includes all of the formatting changes thus produced.
Testing:
Ran the script, CI.
Test Plan: Imported from OSS
Reviewed By: eellison
Differential Revision: D20568523
Pulled By: SplitInfinity
fbshipit-source-id: e09bdb982ccf090eecfb7c7b461b8d0681eef82b
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/22833
grad_sum_to_size does not commute with AutogradAdd after all because it turns the broadcasting AutogradAdd into a broadcasting add.
Chillee did actually do most of the tracking down to the fusion of grad_sum_to_size and pinging me when he had found the cause. Thank you!
About the choice of removing the fusion completely instead of being more precise:
- We do have grad_sum_to_size elimination which works for cases where broadcasting does not actually happen in the forward, so the cases where the fusing of grad_sum_to_size is actually beneficial is much smaller than when initially proposed.
- There will be less fusion, in terms of the tests, IOU stops being fully fused. I vaguely think that it is a case we could handle with refined logic.
- Keeping it would add complexity in checking when to merge fusion groups to the complexities that this PR removes.
- The future of fusion probably lies more in more complete solutions including reductions (TVM or KeOps or our own or ...).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23372
Differential Revision: D16489930
Pulled By: soumith
fbshipit-source-id: bc0431b0d3eda264c401b634675872c4ce46f0f4
Summary:
Bug fix for https://github.com/pytorch/pytorch/issues/15043, where a large fusion in JIT with a large number of kernel arguments, which exceeds the limit allowed by nvrtc on a cuda device.
The fix is to check the number of arguments before a cuda kernel is generated. If the number exceeds the limit, take the runFallBack() path.
Add a reduced test from the original issue to keep the test time low. The test would fail without this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18063
Differential Revision: D14691401
Pulled By: soumith
fbshipit-source-id: b98829bc89ed7724e91eda82ae3a5a1151af721a
Summary:
Here is a fresh attempt at getting some fusion back in autodiff-generated graphs in the presence of SumToSize.
- The sum to size operator is now `aten::_grad_sum_to_size` to allow symbolic script differentiation (and that in turn would need to use this in place of sum_to_size to signal that it strictly operates on gradients). This is also used in the autodiff code, replacing `prim::SumToSize`.
- `_grad_sum_to_size` is now fusable, `cat`s - which are fused afterwards thanks to Adam's simplification of the code - are only fused if there is no `_grad_sum_to_size` in the fusion group.
- I push the `_grad_sum_to_size` out of the the fusion group when compiling and record the desired summations in the KernelSpec. The reasoning is the following:
- As the autodiff is a repeated applicaiton of the chain rule, we always have the pattern `grad_in = mm(A, grad_out)`, with A often diagonal for cases interesting to the fuser, whence it is `grad_in = a * grad_out` (a pointwise multiplication). We know that only `grad_out` may have AutodiffGradSumToSize applied, so we can commute AutodiffGradSumToSize with the `mul` (and `div` and `neg` are of similar origin).
- For `type_as` the gradient might be giving the type, so just skip SumToSize,
- `add` (which was inserted as `prim::AutogradAdd`) adding gradients when the forward used the same value in several places. This is non-broadcasting, so we know that the two arguments would have the same sizes as inputs - which is good so we don't have to do bookkeeping of the two parts.
Details:
- During fusion, the Tensor arguments are always kept as the first parameters of the fusion group to accomodate indexing assumptions in the fuser.
- The rewriting of the fusion group to record the necessary output transformation and eliminate `_grad_sum_to_size` from the fusion group is now in the fuser compile step.
- In the execution step, the arguments are split into Tensor / Non-Tensor and the non-tensor args are mostly forgotten about except for doing `sum_to_size` at the end. This would want to be improved if/when we fuse nonconstant scalar arguments.
- In a number of places in the fuser, the non-Tensor arguments to the fusion group needed to be ignored.
Thank you, apaszke for the insightful discussion. All bad ideas and errors are my own.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14957
Differential Revision: D13888173
Pulled By: zou3519
fbshipit-source-id: 071992c876e8b845f2b3e6329ae03a835d39a0ea
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.
Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524
Differential Revision: D13547989
Pulled By: suo
fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
* Trace ATen non-primitive functions as themselves, not their implementations.
Previously, if I invoked an ATen non-primitive function foo, which in turn
called subfoo, I would always see 'subfoo' in the trace (e.g., tracing
'inlines' all of these operations.) Such inlining is bad for ONNX
(and can be bad for optimization) as it prevents high-level
optimizations from taking advantage of the structure. It might
be right to inline, but give the optimizer a chance to work before
inlining happens!
The implementation here is surprisingly simple, because it uses
the "DCE trick". Essentially, it doesn't matter if the constituent
calls perform tracing, because you can always trace it again, and
override the trace nodes associated with the returned variables.
The original trace becomes dead and can be DCE'd.
While implementing this, I also refactored how 'isTracing' and
'trace_outputs' works:
- isTracing was previously a single function with overloads for
both Tensor and Variable arguments. Unfortunately, such overloads
are not safe, because of how C++ implicit conversions work. You
would think that C++ should never confuse an overload for
Variable with ArrayRef<Tensor>, but this is exactly what can
happen: Tensor is convertible to both Variable and ArrayRef<Tensor>,
thus it's ambiguous and C++ doesn't like it. The last time I ran
into this problem, I applied initializer lists to everything and
called it a day. A more robust fix is to separate out the
Variable and Tensor overloads, which I have done in this patch.
- trace_outputs was fed as an initializer list, which doesn't work
when you have heterogenous inputs. So instead we first feed
everything through 'flatten', which has overloads for each of the
argument patterns in ATen, which then goes on to the recordTrace
(which takes an ArrayRef). This is *no less efficient*, because
we were allocating a vector anyway (to do the conversion from
vector of Tensor to vector of Variable).
This fixes mean that 'index' can properly be traced... although the
JIT still does not support it. A failing test case has been added to
this effect.
Some knock-on effects:
- The fuser now knows about chunk as well as split. They're pretty
similar so there is no problem.
- There is a new 'canonicalize' pass in the JIT which renumbers a graph
so that all structurally equivalent graphs render the same.
- We run DCE before the fuser tests, to make sure dead nodes don't
block fusion.
- There are new ONNX exports for the newly introduced higher level ATen
operations. This includes type_as (no-op case only), chunk, select.
Zach didn't like the extra use of 'native' in the new codegen, so
we've introduced a new concept, 'abstract'. An abstract function
is one that is implemented in derived types (e.g., CPUDoubleType),
where as a concrete one is implemented in the base type (Type).
Signed-off-by: Edward Z. Yang <ezyang@fb.com>