Commit Graph

4 Commits

Author SHA1 Message Date
Jason Ansel
5a114f72bf [Compiled Autograd] Move to torch::dynamo::autograd namespace (#105854)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105854
Approved by: https://github.com/albanD
2023-07-27 00:36:47 +00:00
PyTorch MergeBot
e60af5c8e4 Revert "[Compiled Autograd] Move to torch::dynamo::autograd namespace (#105854)"
This reverts commit 26e3b4020f.

Reverted https://github.com/pytorch/pytorch/pull/105854 on behalf of https://github.com/PaliC due to breaking internal embedded device tests (details shared with author) ([comment](https://github.com/pytorch/pytorch/pull/105854#issuecomment-1650559375))
2023-07-25 21:09:18 +00:00
Jason Ansel
26e3b4020f [Compiled Autograd] Move to torch::dynamo::autograd namespace (#105854)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105854
Approved by: https://github.com/albanD
2023-07-25 01:14:04 +00:00
Jason Ansel
c902b84e0b Compiled autograd (#103822)
This branch:
1) converts the autograd tape into an FX graph
2) caches that conversion using a "shadow" graph
3) compiles and runs the generated FX graph instead of the normal autograd

What works currently:
1) Caching, capture, and initial integration
2) Backwards hooks
3) Inlining AotAutograd generated subgraphs
4) torch.compiling the generated FX graph
5) Auto-detecting dynamic shapes based on changes

Future work
1) Larger scale testing
1) Boxed calling convention, so memory can be freed incrementally
1) Support hooks on SavedTensor
1) Additional testing by running eager autograd tests under compiled_autograd.enable()

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103822
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-07-24 21:12:05 +00:00