Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Summary:
Currently we expect the users to provide custom modules for LSTM and MHA. However, as we almost always ask the users to use those modules in the custom context, it is better to make this behavior default. In this case we try to align with the base quantization API, if the user specifies a custom_config_dict then that is used, however if the value is left as None then the default is used. If a user would like to both use the default and modify it, they have to do so manually, however the default is accessible by get_default_custom_config_dict
Additionally, the NS which uses prepare to insert custom observers for
its purposes had to be slightly modified to pass in an empty
custom_config_dict in order to avoid modifying the custom modules.
due to weird CI issues with previous PR,
previous discussion can be found: https://github.com/pytorch/pytorch/pull/71192
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79960
Approved by: https://github.com/z-a-f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74149
mobilenet v2/v3 failed when using ns tool to analysis the model
due to the empty the tensor, fixed it by filtering the empty tensor
Test Plan: Imported from OSS
Reviewed By: vkuzo
Differential Revision: D34851886
fbshipit-source-id: db94fd5cef7d4a7a128d46bfe3f5ff4e532845fe
(cherry picked from commit 4616a75105abf187a178d95165249cd33345515d)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66380
Description:
1. creates doc pages for Eager and FX numeric suites
2. adds a link from main quantization doc to (1)
3. formats docblocks in Eager NS to render well
4. adds example code and docblocks to FX numeric suite
Test Plan:
```
cd docs
make html
python -m http.server
// renders well
```
Reviewed By: jerryzh168
Differential Revision: D31543173
Pulled By: vkuzo
fbshipit-source-id: feb291bcbe92747495f45165f738631fa5cbffbd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66222
Description:
1. creates doc pages for Eager and FX numeric suites
2. adds a link from main quantization doc to (1)
3. formats docblocks in Eager NS to render well
4. adds example code and docblocks to FX numeric suite
Test Plan:
```
cd docs
make html
python -m http.server
// renders well
```
Reviewed By: jerryzh168
Differential Revision: D31447610
Pulled By: vkuzo
fbshipit-source-id: 441170c4a6c3ddea1e7c7c5cc2f1e1cd5aa65f2f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66058
After the initial migration from `torch.quantization` to `torch.ao.quantization`, some of the files did not change.
This happened because the migration was done in parallel, and some of the files were landed while the others were still in the original location.
This is the last fix in the AO migration phase 1, which completely enables the ao.quantization namespace.
Test Plan: `python test/test_quantization.py`
Reviewed By: vkuzo
Differential Revision: D31366066
Pulled By: z-a-f
fbshipit-source-id: bf4a74885be89d098df2d87e685795a2a64026c5