Commit Graph

43 Commits

Author SHA1 Message Date
Maggie Moss
9940e894ea Fix pyrefly ignore syntax in _inductor (#166247)
Ensures pyrefly ignores only ignore the intended error code.

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166247
Approved by: https://github.com/oulgen
2025-10-27 02:48:42 +00:00
Maggie Moss
9944cac6e6 Add suppressions to torch/_inductor (#165062)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Split this directory into two PRs to keep them from being too large.

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165062
Approved by: https://github.com/oulgen, https://github.com/mlazos
2025-10-09 20:34:20 +00:00
Colin L Reliability Rice
8b2a650572 pt2_remote_cache: Log sample for failures, and log the explicit reason we're faling. (#156874)
Summary: This allows us to start alerting on cache failures, based on scuba data

Test Plan:
Added new tests explicitly for the Remote Cache API.

Note that we have existing tests for memcache, but not for manifold AFAICT.

There are two potential wrinkles. One we're adding a new field (and everything uses ScubaData AFAICT, so this should just work).

The other one is the implicit api contract that if the sample is None, then it will be ignored (and not crash). I believe the second one is implemented correctly (and tested). The first one is a little more nebulous, but I think won't cause any breakages.

Also manually ran a compile and made sure it didn't break - P1851504490 as well as forcing it to break and checking we didn't screw up the exception handling - P1851504243

Rollback Plan:

Differential Revision: D77054339

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156874
Approved by: https://github.com/oulgen, https://github.com/masnesral
2025-07-18 20:28:27 +00:00
Xuehai Pan
6ff6630375 [BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313
Approved by: https://github.com/jingsh
2025-06-23 02:57:12 +00:00
PyTorch MergeBot
f1331f3f1b Revert "[BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)"
This reverts commit 3627270bdf.

Reverted https://github.com/pytorch/pytorch/pull/156313 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
Xuehai Pan
3627270bdf [BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313
Approved by: https://github.com/jingsh
2025-06-22 08:43:09 +00:00
Chuanqi Xu
4a46ee96d2 [Indcutor Remote Cache] Raise an exception if redis module is required but not available (#151779)
If we need redis but redis is not available, it is better to tell the user to install redis instead of continue silently.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151779
Approved by: https://github.com/aorenste
2025-04-26 11:21:54 +00:00
Aaron Orenstein
bac62341eb PEP585 update - torch/_inductor (#145198)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145198
Approved by: https://github.com/bobrenjc93
2025-01-21 21:04:33 +00:00
Yasyf Mohamedali
e3ddc0ca33 Support remote caching requiring redis auth (#141679)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141679
Approved by: https://github.com/masnesral
2024-12-12 17:07:50 +00:00
Oguz Ulgen
4981bd8355 Make cache keys consistent between OSS and internal (#142147)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142147
Approved by: https://github.com/jamesjwu, https://github.com/masnesral
2024-12-05 22:29:07 +00:00
Colin L. Rice
6b620423a3 dynamo_timed: Add a log_waitcounter option. (#141402)
This logs a waitcounter of the name pytorch.dynamo_timed.{key}.

Primarily sending this now to make sure everyone likes the API, then
I'll add tests, and migrate one dynamo_timed to use it. (likely starting
with
https://github.com/pytorch/pytorch/pull/141379).

Testing is a bit harder, since we don't normally have any way to read
_WaitCounter state AFAICT. I want to poke around and see if I can figure
out a way to read the state, otherwise I'll just mock it to at least
make sure it's mostly working.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141402
Approved by: https://github.com/jamesjwu, https://github.com/masnesral
2024-12-03 19:24:29 +00:00
Colin L. Rice
64d44a39a1 remote_cache: Add a waitcounter for gets and sets (#141307)
This adds a basic waitcounter to help show if we're spending a lot of
time doing gets and sets to remote caches

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141307
Approved by: https://github.com/masnesral
2024-12-02 20:48:47 +00:00
Sam Larsen
b11ff3cf60 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
2024-11-14 19:11:20 +00:00
PyTorch MergeBot
d63eb3c46c Revert "[logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)"
This reverts commit cb15c15157.

Reverted https://github.com/pytorch/pytorch/pull/139849 on behalf of https://github.com/kit1980 due to Breaking an internal tests + there is a bug according to the author ([comment](https://github.com/pytorch/pytorch/pull/139849#issuecomment-2474459094))
2024-11-13 18:47:51 +00:00
Sam Larsen
cb15c15157 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
ghstack dependencies: #140094
2024-11-11 14:24:23 +00:00
Sam Larsen
dbaa431dfb Put remote fx cache dynamo_timed definition in OSS location (#140016)
Summary: I'm refactoring dynamo_timed and updating the params. It will be much easier to do this refactor entirely in OSS. So this diff essentially provides a couple aliases in the OSS area that I can update without affecting the internal usage.

Test Plan: Ran locally and made sure I still got samples: https://fburl.com/scuba/dynamo_compile/sandbox/qub89lwj

Reviewed By: oulgen

Differential Revision: D65580302

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140016
Approved by: https://github.com/oulgen
2024-11-07 23:51:48 +00:00
Sam Larsen
52446d7f30 Revert D65290089 (#139893)
Summary:
This diff reverts D65290089
This change is introducing more logging than I realized and could present problems for tlparsen

Test Plan: NA

Reviewed By: jamesjwu

Differential Revision: D65541060

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139893
Approved by: https://github.com/jamesjwu
2024-11-07 00:10:09 +00:00
Sam Larsen
b8cf324e50 [pt2 logging] move remote cache get/put logging up one level (#139423)
Summary: I need to refactor the way we record CompilationMetrics. It will be much easier to do in OSS and having the relevant timing code in the OSS area of the codebase will make this much easier. I doubt this meaningfully changes the values we see.

Test Plan: Made sure samples show up: https://fburl.com/scuba/dynamo_compile/sandbox/c38zjq0x

Differential Temp Revision: D65290089

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139423
Approved by: https://github.com/oulgen
2024-11-06 22:44:53 +00:00
PyTorch MergeBot
9018326bb8 Revert "[pt2 logging] move remote cache get/put logging up one level (#139423)"
This reverts commit c412a42ae2.

Reverted https://github.com/pytorch/pytorch/pull/139423 on behalf of https://github.com/ZainRizvi due to Reverted internally. See D65541060 for more details ([comment](https://github.com/pytorch/pytorch/pull/139423#issuecomment-2460765579))
2024-11-06 20:59:54 +00:00
Edward Z. Yang
585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00
PyTorch MergeBot
92d7f29e59 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit f6be44c74e.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to more fbcode errors ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452985581))
2024-11-02 13:11:04 +00:00
Edward Z. Yang
f6be44c74e Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-02 11:50:11 +00:00
PyTorch MergeBot
8d1eaa3da6 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit a6630bcf87.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to internal code triggers import cycle ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452833882))
2024-11-02 03:38:15 +00:00
Edward Z. Yang
a6630bcf87 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-01 21:43:25 +00:00
Sam Larsen
c412a42ae2 [pt2 logging] move remote cache get/put logging up one level (#139423)
Summary: I need to refactor the way we record CompilationMetrics. It will be much easier to do in OSS and having the relevant timing code in the OSS area of the codebase will make this much easier. I doubt this meaningfully changes the values we see.

Test Plan: Made sure samples show up: https://fburl.com/scuba/dynamo_compile/sandbox/c38zjq0x

Differential Revision: D65290089

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139423
Approved by: https://github.com/oulgen
2024-11-01 21:06:59 +00:00
Aaron Orenstein
524fe784ec BundledAutotuneCache (take 2) (#137902)
Summary:
Add a cache to combine individual autotune caches into a single cached bundle.  We still rely on the individual autotune caches - on a cache hit we copy the individual results into the local caches so they can retrieved later.

Attempt 2 of #134959 (D60677499).

Various configs:
env: TORCHINDUCTOR_BUNDLED_AUTOTUNE_REMOTE_CACHE
config: bundled_autotune_remote_cache
jk: pytorch/remote_cache:bundled_autotune_remote_cache_version

Test Plan:
unit tests

Manually tested w/ EMU:
```
cd fbcode/accelerators/workloads/models/emu_flash/v1p4
make build_benchmark_model && make save_model_to_path
make test_pt2_latency
```

- on a cold run we got 0 hits and 40 misses. On a warm run it got 40 hits and 0 miss.
- perf seems a little better - for 8 runs:
  - no bundled cache averaged 14m11s
  - bundled cache averaged 14m6s
  - 125ms saved per cache entry seems reasonable

Cache Metrics for an sample run:
no bundled cache:
```
INFO: Cache Metrics:
  FbMemcacheRemoteKernelCache: {hit: 2256, miss: 0, put: 0, exception: 0}
  FbRemoteAutotuneCache: {hit: 0, miss: 0, put: 7, exception: 0}
  FbRemoteFxGraphCache: {hit: 40, miss: 0, put: 0, exception: 0}
  LocalAutotuneCache: {hit: 878, miss: 0, put: 7, exception: 0}
  backend:MemcacheCache: {hit: 2256, miss: 0, put: 7, exception: 0}
  backend:_LocalAutotuneCacheBackend: {hit: 878, miss: 0, put: 7, exception: 0}
  backend:_ManifoldCache: {hit: 40, miss: 0, put: 0, exception: 0}
```
bundled cache:
```
INFO: Cache Metrics:
  FbMemcacheRemoteKernelCache: {hit: 2258, miss: 0, put: 0, exception: 0}
  FbRemoteAutotuneCache: {hit: 0, miss: 0, put: 8, exception: 0}
  FbRemoteBundledAutotuneCache: {hit: 40, miss: 0, put: 0, exception: 0} <<<<<<
  FbRemoteFxGraphCache: {hit: 40, miss: 0, put: 0, exception: 0}
  LocalAutotuneCache: {hit: 878, miss: 0, put: 886, exception: 0}
  backend:MemcacheCache: {hit: 2258, miss: 0, put: 8, exception: 0}
  backend:_LocalAutotuneCacheBackend: {hit: 878, miss: 0, put: 886, exception: 0}
  backend:_ManifoldCache: {hit: 80, miss: 0, put: 0, exception: 0}
```

Differential Revision: D64336043

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137902
Approved by: https://github.com/oulgen
2024-10-15 18:39:47 +00:00
PyTorch MergeBot
1358969fa1 Revert "BundledAutotuneCache (#134959)"
This reverts commit 709021143d.

Reverted https://github.com/pytorch/pytorch/pull/134959 on behalf of https://github.com/albanD due to The newly added test fails on rocm CI ([comment](https://github.com/pytorch/pytorch/pull/134959#issuecomment-2408091754))
2024-10-11 20:43:56 +00:00
Aaron Orenstein
709021143d BundledAutotuneCache (#134959)
Add a cache to combine individual autotune caches into a single cached bundle.  We still rely on the individual autotune caches - on a cache hit we copy the individual results into the local caches so they can retrieved later.

Various related configs:
env: TORCHINDUCTOR_BUNDLED_AUTOTUNE_REMOTE_CACHE
config: bundled_autotune_remote_cache
jk: pytorch/remote_cache:bundled_autotune_remote_cache_version

Testing:

Manually tested w/ EMU:
```
cd fbcode/accelerators/workloads/models/emu_flash/v1p4
make build_benchmark_model && make save_model_to_path
make test_pt2_latency
```

 - on a cold run we got 0 hits and 40 misses. On a warm run it got 40 hits and 0 miss.
- perf seems a little better - for 8 runs:
  - no bundled cache averaged 14m11s
  - bundled cache averaged 14m6s
  - 125ms saved per cache entry seems reasonable

Cache Metrics for an sample run:
no bundled cache:
```
INFO: Cache Metrics:
  FbMemcacheRemoteKernelCache: {hit: 2256, miss: 0, put: 0, exception: 0}
  FbRemoteAutotuneCache: {hit: 0, miss: 0, put: 7, exception: 0}
  FbRemoteFxGraphCache: {hit: 40, miss: 0, put: 0, exception: 0}
  LocalAutotuneCache: {hit: 878, miss: 0, put: 7, exception: 0}
  backend:MemcacheCache: {hit: 2256, miss: 0, put: 7, exception: 0}
  backend:_LocalAutotuneCacheBackend: {hit: 878, miss: 0, put: 7, exception: 0}
  backend:_ManifoldCache: {hit: 40, miss: 0, put: 0, exception: 0}
```
bundled cache:
```
INFO: Cache Metrics:
  FbMemcacheRemoteKernelCache: {hit: 2258, miss: 0, put: 0, exception: 0}
  FbRemoteAutotuneCache: {hit: 0, miss: 0, put: 8, exception: 0}
  FbRemoteBundledAutotuneCache: {hit: 40, miss: 0, put: 0, exception: 0}
  FbRemoteFxGraphCache: {hit: 40, miss: 0, put: 0, exception: 0}
  LocalAutotuneCache: {hit: 878, miss: 0, put: 886, exception: 0}
  backend:MemcacheCache: {hit: 2258, miss: 0, put: 8, exception: 0}
  backend:_LocalAutotuneCacheBackend: {hit: 878, miss: 0, put: 886, exception: 0}
  backend:_ManifoldCache: {hit: 80, miss: 0, put: 0, exception: 0}
```

Differential Revision: D60677499

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134959
Approved by: https://github.com/oulgen
2024-10-11 19:12:41 +00:00
James Wu
4db199f15f Implement Remote AOTAutogradCache (#137278)
Summary: Implement Remote AOTAutogradCache. It uses all the same tech as Remote FXGraphCache, just with its own name.

Test Plan:
Run benchmark:
TORCHINDUCTOR_AUTOGRAD_REMOTE_CACHE=1 TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE=1 TORCHINDUCTOR_AUTOGRAD_CACHE=0 TORCHINDUCTOR_FX_GRAPH_CACHE=0 TORCH_LOGS=+torch._functorch._aot_autograd.autograd_cache buck run mode/opt benchmarks/dynamo:torchbench -- --training --backend=inductor --only nanogpt --repeat 5 --performance --cold-start-latency

See that it cache hits even with local cache removed.

Results show up in remote cache logs https://fburl.com/scuba/pt2_remote_cache/5893dbaj

New unit tests

Reviewed By: oulgen

Differential Revision: D63323958

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137278
Approved by: https://github.com/oulgen
2024-10-07 15:38:54 +00:00
Aaron Orenstein
9fc721d22b Add cache logs + other minor caching cleanup (#136456)
Summary:
- Added TORCH_LOGS=cache to dump cache stats on exit - supported by RemoteCache.
- Split REMOTE_CACHE_VERSION - it was used for both JKs fx_graph_memcache_version and autotune_memcache_version but they really should be separate (just in case we need to change one but not the other)
- Prepare `_ManifoldCache` for use with other subpath keys
- Move create_cache to be more public and use it in codecache
- Add _InductorMetaTy alias (still just a dict)
- Cleaned up some common cached_autotune calls in triton_heuristics

Test Plan: unit tests

Reviewed By: oulgen

Differential Revision: D62648249

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136456
Approved by: https://github.com/oulgen
2024-09-24 14:00:23 +00:00
Aaron Gokaslan
31715be72a [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-16 19:44:11 +00:00
PyTorch MergeBot
3117f2cf67 Revert "[BE]: Update mypy to 1.11.2 (#133816)"
This reverts commit 55299cfc22.

Reverted https://github.com/pytorch/pytorch/pull/133816 on behalf of https://github.com/jeanschmidt due to seems to have broken https://github.com/pytorch/pytorch/actions/runs/10865710499/job/30155699792 on main ([comment](https://github.com/pytorch/pytorch/pull/133816#issuecomment-2352377684))
2024-09-16 09:11:16 +00:00
Aaron Gokaslan
55299cfc22 [BE]: Update mypy to 1.11.2 (#133816)
Updates mypy to 1.11.1 to improve type inference

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133816
Approved by: https://github.com/ezyang
2024-09-14 21:40:36 +00:00
Aaron Orenstein
7239b8a4f1 Clean up RemoteCache classes (#134032)
Summary:
The existing RemoteCacheBackend classes were a bit haphazard - some of them accepted bytes only, some accepted objects, some returned different types of objects than were passed in.

Update them to be more consistent:

1. RemoteCacheBackend is an implementation of a backend: Redis, Memcache, Manifold, LocalFile

2. RemoteCacheSerde is an implementation of a serde protocol - to turn structured objects (dict, list, etc) into bytes: RemoteCacheJsonSerde (json encoding), RemoteCachePassthroughSerde (strictly bytes only)

3. RemoteCache is the cache implementation itself, mixing a RemoteCacheBackend along with an RemoteCacheSerde to provide structured caching.

Other than simply reorganizing the existing cache code this also fixes the Redis autotune caching for OSS.

Test Plan: unit tests

Reviewed By: oulgen

Differential Revision: D61178859

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134032
Approved by: https://github.com/oulgen, https://github.com/bhack
2024-08-31 20:18:59 +00:00
Aaron Orenstein
c88174df95 typing for remote_cache (#133446)
Summary:
typing annotations for remote_cache
Redo of #133299 with fixed annotations.

Test Plan: unit tests

Differential Revision: D61271883

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133446
Approved by: https://github.com/oulgen
2024-08-15 06:36:13 +00:00
PyTorch MergeBot
69de9e78e9 Revert "typing for remote_cache (#133299)"
This reverts commit 2fde1934f9.

Reverted https://github.com/pytorch/pytorch/pull/133299 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/133299#issuecomment-2287067434))
2024-08-13 20:26:24 +00:00
Aaron Orenstein
2fde1934f9 typing for remote_cache (#133299)
Summary: typing annotations for remote_cache

Test Plan: unit tests

Reviewed By: oulgen

Differential Revision: D60937968

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133299
Approved by: https://github.com/Skylion007
2024-08-13 18:28:41 +00:00
Oguz Ulgen
09f9c256ad Add basic mypy annotations to inductor (#132416)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132416
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
ghstack dependencies: #132415
2024-08-04 18:43:37 +00:00
PyTorch MergeBot
f2ddd5e9e0 Revert "Add basic mypy annotations to inductor (#132416)"
This reverts commit 78927d37f6.

Reverted https://github.com/pytorch/pytorch/pull/132416 on behalf of https://github.com/ZainRizvi due to Sorry, this PR has entered a weird state in the diff train. Trying to revert it to skip it, and then we can try relanding it ([comment](https://github.com/pytorch/pytorch/pull/132415#issuecomment-2267631785))
2024-08-04 18:39:29 +00:00
Oguz Ulgen
78927d37f6 Add basic mypy annotations to inductor (#132416)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132416
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
ghstack dependencies: #132415
2024-08-01 20:14:25 +00:00
Aaron Orenstein
afe15d2d2f Flip default value for mypy disallow_untyped_defs [3/11] (#127840)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127840
Approved by: https://github.com/oulgen
2024-06-08 18:28:01 +00:00
Sam Larsen
6e2e09f6cc [inductor] fix redis-related env vars in remote_cache.py (#127583)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127583
Approved by: https://github.com/oulgen
2024-06-01 19:55:25 +00:00
Sam Larsen
3f5d8636aa [inductor] Copy RedisRemoteCacheBackend into pytorch (#127480)
Summary: We need an implementation of RedisRemoteCacheBackend with the same API that we're using for FbMemcacheRemoteFxGraphCacheBackend. So we'll stop using the Triton implementation and adapt a version for use by inductor. I also renamed parameters and cache entries to match our cache terminology.

Test Plan: Ran this command twice and inspected log output to ensure I got cache hits:
```
TORCH_LOGS=+torch._inductor.codecache TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE=1 python benchmarks/dynamo/torchbench.py --performance --inductor --device cuda --training --amp --print-compilation-time --only dcgan
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127480
Approved by: https://github.com/oulgen
2024-05-30 13:08:10 +00:00