This is follow-up of #165037. It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165142
Approved by: https://github.com/albanD
For support https://github.com/pytorch/ao/issues/2228
> What we want to do now is to enable FP8 quantization in PyTorch. And similar as INT8 quantization, we need to insert quantize and dequantize ops into the graph.
>
> However we met problems with these q/dq ops both in the PyTorch core and Torchao.
>
> PyTorch core:
>
> The quantize_per_tensor op does not support FP8. We want to fix it via https://github.com/pytorch/pytorch/pull/153601. And as you commented, the op is deprecated.
> Torchao:
>
> In the fusion pass in Inductor, we want to match the pattern fp8_weight -> torchao.dequantize_affine_float8 -> fp32_op and fuse it as fp8_weight -> weight_pack -> fp8_op. We have done so for INT8 PT2E quantization. However, the pattern matching pass is applied after a constant folding pass in Inductor:
> 100ec0b34a/torch/_inductor/fx_passes/freezing_patterns.py (L69C1-L74C1)
> After constant_fold(gm), the pattern will be folded as fp32_weight -> fp32_op. Then the original pattern cannot be found any more and the FP8 semantics is lost since the pattern is entirely in fp32 now.
> For INT8, the int8_weight -> quantized_decomposed.dequantize_per_channel -> fp32_op pattern won't be folded because we mark quantized_decomposed.dequantize_per_channel impure so that it won't be folded: 100ec0b34a/torch/_inductor/constant_folding.py (L139C1-L149C1) . But for the torchao.dequantize_affine_float8, we cannot do this because
> It is an op from Torchao, which is unknown to the constant folder
> It is decomposed to smaller ops, so we cannot put it in the list as a single op.
> So, we think an easy and short-term solution is to modify the ops in PyTorch core via https://github.com/pytorch/pytorch/pull/153601.
> However, if we want to resolve the issue with Torchao, we need to
> Add a method in the constant folder in Inductor to allow registration of impure ops
Based on [Jansel‘s reply](https://github.com/pytorch/ao/issues/2228#issuecomment-2914560340), add dont constant fold flag on this patch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154945
Approved by: https://github.com/jansel
Co-authored-by: Jason Ansel <jansel@jansel.net>
For support https://github.com/pytorch/ao/issues/2228
> What we want to do now is to enable FP8 quantization in PyTorch. And similar as INT8 quantization, we need to insert quantize and dequantize ops into the graph.
>
> However we met problems with these q/dq ops both in the PyTorch core and Torchao.
>
> PyTorch core:
>
> The quantize_per_tensor op does not support FP8. We want to fix it via https://github.com/pytorch/pytorch/pull/153601. And as you commented, the op is deprecated.
> Torchao:
>
> In the fusion pass in Inductor, we want to match the pattern fp8_weight -> torchao.dequantize_affine_float8 -> fp32_op and fuse it as fp8_weight -> weight_pack -> fp8_op. We have done so for INT8 PT2E quantization. However, the pattern matching pass is applied after a constant folding pass in Inductor:
> 100ec0b34a/torch/_inductor/fx_passes/freezing_patterns.py (L69C1-L74C1)
> After constant_fold(gm), the pattern will be folded as fp32_weight -> fp32_op. Then the original pattern cannot be found any more and the FP8 semantics is lost since the pattern is entirely in fp32 now.
> For INT8, the int8_weight -> quantized_decomposed.dequantize_per_channel -> fp32_op pattern won't be folded because we mark quantized_decomposed.dequantize_per_channel impure so that it won't be folded: 100ec0b34a/torch/_inductor/constant_folding.py (L139C1-L149C1) . But for the torchao.dequantize_affine_float8, we cannot do this because
> It is an op from Torchao, which is unknown to the constant folder
> It is decomposed to smaller ops, so we cannot put it in the list as a single op.
> So, we think an easy and short-term solution is to modify the ops in PyTorch core via https://github.com/pytorch/pytorch/pull/153601.
> However, if we want to resolve the issue with Torchao, we need to
> Add a method in the constant folder in Inductor to allow registration of impure ops
Based on [Jansel‘s reply](https://github.com/pytorch/ao/issues/2228#issuecomment-2914560340), add dont constant fold flag on this patch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154945
Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel
Co-authored-by: Jason Ansel <jansel@jansel.net>
Summary:
Do not fold torchbind objects in constant folding
Any operation on these torchbind objects can have arbitrary side effects, so we can't effectively constant fold anything torchbind-obj-related anyway.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile_constant_folding
```
Reviewed By: angelayi
Differential Revision: D69946541
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148993
Approved by: https://github.com/angelayi
Summary:
There are 2 issues:
- `skip_folding_node_fn` isn't considered when propagating constant values. So given a skipped node with constant inputs, it outputs a constant and its users can output constant values and then be included in the constant graph. However, the skipped node is not included in the constant graph when extracting the constant graph. This issue is fixed by checking for skipped node when propagating the constant values and making the skipped node to output unknown value (not constant) so that its users cannot output constant.
- `fba_linear` op can be included in the constant graph but it is not implemented for CPU so constant graph cannot be executed. This issue is fixed by converting `fba_linear` to `aten.addmm`.
- A refactor to allow more fba_ops to be included in the constant graph (via mapping fba_ops to aten ops).
Reviewed By: StellarrZ
Differential Revision: D68716393
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146948
Approved by: https://github.com/zhxchen17
Summary: The current implementation introduces a compile-time regression due to overhead hashing large constants. To support freezing+caching, we consider only the tensor metadata of frozen params, but we neglect to do the same for any constants created as a result of folding frozen params. This PR Explicitly marks the constants created during freezing (and constant folding during freezing) and uses that info in the inductor cache to determine when to hash a tensor value+metadata vs. metadata only.
Test Plan: `python benchmarks/dynamo/torchbench.py --backend inductor --device cuda --only alexnet --bfloat16 --cold-start-latency --print-compilation-time --inference --performance --freezing`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145868
Approved by: https://github.com/eellison
**Description**
For `linear_dynamic_fp16`, we insert `quantize` and `dequantize` between x/w and linear to have the following pattern:
```
x
|
linear <- to_fp32 <- to_fp16 <- w
```
In Inductor, the pattern we finally see will be
```
fp32 activation
|
(reshape)
|
mm/addmm <- t <- to_fp32 <- tp_fp16 <- weight
|
(reshape)
```
Or
```
fp32 activation
|
expand
|
bmm <- expand <- t <- to_fp32 <- tp_fp16 <- weight
|
(add)
```
The second pattern is for x.ndim > 2 and x is not contiguous. The first pattern is for other cases.
Fuse the pattern with weight prepack, and we get
```
fp32 activation
|
onednn.linear_dynamic_fp16 <- onednn.linear_prepack_fp16 <- weight
```
After freezing, the prepack op is gone.
**Test plan**
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_linear_dynamic_fp16
```
Differential Revision: [D66802159](https://our.internmc.facebook.com/intern/diff/D66802159)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141549
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
Summary: Add the helper function to put a const graph back to the toplevel graph, can be useful when we're taking const graphs from delegates.
Test Plan: CI
Reviewed By: trieuat
Differential Revision: D63031982
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140854
Approved by: https://github.com/SherlockNoMad
Summary:
Current implementation for lifted graph takes a dict of [constant name: constant value]. And the constant value is used to run_node and excute the constant graph to get the folded values and then create new getattr nodes for folded values.
We don't have constant values for lifted graph during model compilation on MTIA. I think it is more general to allow the constant folding pass to just take the constant names only to produce the constant graph and represent the folded nodes as placeholders to make it consistent with lifted graph. Additionally, this mimic the real situation on Sigmoid, where Sigmoid executes the constant graph, get the folded values and set the folded values to the main graph. This diff is to update the pass to work with a list of constant names.
Test Plan:
```
buck run mode/opt caffe2/test:test_export -- -r split_const_gm
```
Differential Revision: D62144791
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135060
Approved by: https://github.com/SherlockNoMad
Co-authored-by: Tuan Trieu <tuant@meta.com>
Part of #134054.
This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
Summary:
In export workflow, we always have a lifted graph which doesn't fetch constants through get_attr nodes. This cause some compatibility issue when we're trying to use inductor's split_const_gm function with a lifted graph.
This diff make an additive change to split_const_gm's interface, such that, when the pass sees a placeholder node is present in the lifted_constants table, it will also use that as the source of constness.
This change won't break the existing code and the lifted_constants table can be used orthogonal to the existing const folding mechanisms.
Also as required from MTIA team, we want to introduce a small callback function used to skip certain nodes during const folding.
For the internal followup counterpart, see D59685145
Test Plan: buck run mode/opt caffe2/test:test_export -- -r split_const_gm
Differential Revision: D59692790
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130743
Approved by: https://github.com/desertfire, https://github.com/SherlockNoMad
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops
We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.
Taken over from https://github.com/pytorch/pytorch/pull/128937
joint work with @imzhuhl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops
We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.
Taken over from https://github.com/pytorch/pytorch/pull/128937
joint work with @imzhuhl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
Make it easier to serialize patterns by adding `pattern_matcher.gen_register_replacement()` which is like `pattern_matcher.register_replacement()` but also requires the replacement to be precompiled.
To precompile patterns (and save to disk) run:
```
torchgen/fuse_attention_patterns/gen_attention_patterns.py
```
- Updated the sfdp patterns to use `gen_register_replacement`.
- Add serialized patterns for mm_pattern and bmm_pattern (The 'misc' patterns don't serialize cleanly so can't be added).
- Updated the testing so it checked the round-trip patterns match and not just that it serialized the same way.
- Checking that the patterns round-trip properly found that the `users` field wasn't being serialized properly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121313
Approved by: https://github.com/eellison
There exist some issues in the previous PR (https://github.com/pytorch/pytorch/pull/120985) of supporting int8 WOQ mm pattern matcher. This PR tends to further optimize it.
1. New patterns are added to match int8 woq mm in gpt-fast model, due to different input layouts.
2. In constant folding, `int8_weight -> dq -> bf16_weight` should be kept for pattern match.
3. Currently, GPT-Fast enables `coordinate_descent_tuning` for CPU. This flag is only useful for CUDA, but it could change the graph: from the non-decomposed fallback pass to the decomposed one. We will disable the flag in GPT-Fast script for CPU, in order to have neat patterns. @yanbing-j
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122955
Approved by: https://github.com/jgong5, https://github.com/jansel
Summary:
Add Runtime Constant-folding for AOTInductor.
This also include the invocation of constant folding at load time.
The constant folding lowering is a 2-step process.
First, we split the graph into 2 modules, one of it is the constant module, which doesn't depend on any input and the whole module could be inferred (constant-folded) one-time and be reused. The constant module, is lowered, and being codegen-ed as usual and cached (let's call this constant code). The constant code reuses the whole lowering/profiling/etc. process, only difference is that we do not generate any headers or initialization for the constant code.
Second, after handling the constant module, we take care of the main module (which is the part that would depend on the user input.) For the main module, we take in one additional component, the constant code, compare with a normal lowering. Addition step we do here is that, we inject the constant code into the codegen-ed main module, and create the caller for the main module to consume the result of the constant module.
Test Plan: Unit tests included in commit.
Differential Revision: D53274382
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118765
Approved by: https://github.com/chenyang78
This PR fixes two bugs
1) Constant folding a triton kernel results in the kernel's inputs to be returned back without any modification. Disable constant folding for triton kernels. Need more investigation
2) NoneLayout buffers should not be deleted as they do not exist
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115908
Approved by: https://github.com/aakhundov, https://github.com/jansel
Summary:
Two nodes can point to the same attribute via node.target.
This makes sure,
- we don't try to delete already deleted attribute, i.e. delete attr only once
- we do delete all the nodes pointing to the attribute
Test Plan:
```
buck run fbcode//mode/dev-nosan fbcode//executorch/backends/xnnpack/test:test_xnnpack_passes -- executorch.backends.xnnpack.test.passes.test_batch_norm_fusion.TestBatchNormFusion.test_q8_batch_norm_fusion
```
Differential Revision: D51419442
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113957
Approved by: https://github.com/Skylion007
Couple changes to make it more efficient.
- Because we replacing nodes that only have a single value, only store a single value instead of the whole tensor for node replacement
- torch.fx.Interpreter will preserve a Tensor in the env as long as it has more uses. That also applies even to output uses, but we are not going to constant fold that use. Instead of using last use for garbage collection, use last non output use.
If reviewers would prefer I ghstack this bc of code movement let me know.
Fix for https://github.com/pytorch/pytorch/issues/108388
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108421
Approved by: https://github.com/jansel