Commit Graph

5412 Commits

Author SHA1 Message Date
Animesh Jain
b060e5c131 [dynamo] Move more FUNCTION_MATCH to CLOSURE_MATCH (#166444)
Closure match is more relaxed than function match which is id match

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166444
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166437
2025-10-28 23:19:42 +00:00
Michael Lazos
6d5e651a50 [user-streams] update stream context to use fork/join (#162903)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162903
Approved by: https://github.com/anijain2305
2025-10-28 23:12:05 +00:00
Animesh Jain
a1eb6b5538 [dynamo][guards] Do not guard on the queue_callback (#166437)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166437
Approved by: https://github.com/xmfan
2025-10-28 22:37:38 +00:00
can-gaa-hou
d9483d4c8d [dynamo] Clean up assert in dynamo [3/N] (#165903)
Some previous PRs have been merged. This PR aims for some **assert** that the users can trigger, and it may be better to turn them into a graph break. Correct me if there are any problems.

* ->#165903(Clean up for graph break)
* #165745
* #165430

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165903
Approved by: https://github.com/williamwen42

Co-authored-by: William Wen <william.wen42@gmail.com>
2025-10-28 22:29:35 +00:00
Animesh Jain
84a2715d34 [dynamo] Revert C++-fying of symbolic shape guards (#166427)
Moving symbolic shape guards to C++ causes compile time issues. This basically boils down to a tradeoff question.

For models that have large amount of dynamic shape guards, this flag will help reduce guard latency. But for most of the models, that have a very few dynamic shape guards, the guard lantecy is anyways small. These models will still see a high compile time hit because of calling gcc during the compile.

So a good default value seems to be False. We can write a doc to give guidance on reducing guard latency.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166427
Approved by: https://github.com/zou3519
2025-10-28 21:57:31 +00:00
Ved Thorat
21b48f8dfa Fixes torch.compile(nn.ModuleList()) changes bool() behavior (#159208)
Fixes #159139
## The Cause

The bug occurs because the OptimizedModule wrapper in torch._dynamo.eval_frame doesn't call the len method. This causes Python's bool() check to fall back to the default object truthiness (always True) instead of correctly evaluating containers with len() == 0 as False.
## The Fix

A very easy fix . I just added the len method to OptimizedModule in torch._dynamo.eval_frame class to delegate the call to the original module
```python
def __len__(self):
    """
    Proxy the len() call to the original module to fix truthiness checks.
    """
    return len(self._orig_mod)
```
This successfully fixes the issue . The script now works as expected.
## Reproduction Script
```python
import torch
import torch.nn as nn

# Create an empty nn.ModuleList
original = nn.ModuleList()

# Compile it using torch.compile
compiled = torch.compile(original)

# Compare their boolean evaluations
print(f"bool(original): {bool(original)}")
print(f"bool(compiled): {bool(compiled)}")

# Trigger failure if they differ
assert bool(original) == bool(compiled), "BUG: truthiness behavior mismatch after compilation"
```
## Output

bool(original): False
bool(compiled): False

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159208
Approved by: https://github.com/andrewboldi, https://github.com/Lucaskabela

Co-authored-by: pushkar-hue <pushkarsharma.rtm@gmail.com>
Co-authored-by: Lucas Kabela <lucasakabela@gmail.com>
2025-10-28 19:21:24 +00:00
Roman Krasavtsev
e137cd0a10 docs: fix typos (#164879)
Correct typos in the comments

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164879
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/cyyever
2025-10-28 12:00:36 +00:00
William Wen
32fe4f681e [dynamo] fix keyerror in resume_execution (again) (#166040)
Fixes https://github.com/pytorch/pytorch/issues/166176

The error I attempted to fix in https://github.com/pytorch/pytorch/pull/162318 was still appearing internally.

Surprised that this wasn't caught anywhere 😰

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166040
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166036
2025-10-28 07:04:29 +00:00
William Wen
ebb2b2e894 [dynamo] fix store attr graph break in with block (#166036)
Fixes https://github.com/pytorch/pytorch/issues/166033

Differential Revision: [D85198055](https://our.internmc.facebook.com/intern/diff/D85198055)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166036
Approved by: https://github.com/Lucaskabela
2025-10-28 07:04:29 +00:00
Animesh Jain
02095cc09d [dynamo] Dont guard on getset descriptors for torch_function (#166346)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166346
Approved by: https://github.com/mlazos
ghstack dependencies: #166329
2025-10-28 04:33:56 +00:00
Animesh Jain
65868156c6 [dynamo] Guard selectively on the torch APIs (#166329)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166329
Approved by: https://github.com/Lucaskabela
2025-10-28 04:33:56 +00:00
Zhengxu Chen
f93ea7dab1 [export] Update dynamo_graph_capture_for_export to return GraphModule. (#166091)
Make dynamo_graph_capture_for_export return a more compatible GraphModule object which is closer the the original behavior of dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166091
Approved by: https://github.com/tugsbayasgalan
2025-10-28 04:23:28 +00:00
William Wen
f452edd782 [dynamo, 3.14] fix misc. bugs to get most dynamo unittests passing locally in 3.14 (#164631)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164631
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
2025-10-28 03:24:22 +00:00
William Wen
ea698e8bfc [dynamo, nested graph breaks] disallow nested graph breaks in HOPs (#166016)
As discussed offline with @ydwu4, we should not allow nested graph breaks in HOPs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166016
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166013, #166015, #165808, #165809
2025-10-28 03:03:38 +00:00
William Wen
7f7a28046b [dynamo, nested graph breaks] disable nested graph breaks in generators; enable nested_graph_breaks in test_ctx_manager.py and test_generator.py (#165809)
Generators should not support nested graph breaks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165809
Approved by: https://github.com/Lucaskabela, https://github.com/guilhermeleobas
ghstack dependencies: #166013, #166015, #165808
2025-10-28 03:03:37 +00:00
William Wen
d8283a317a [dynamo, nested graph breaks] fix RETURN_VALUE tx skipping in nested graph breaks (#165808)
Previously, we would completely skip building and calling any resume function if the leaf frame's resume instruction was RETURN_VALUE/RETURN_CONST. Now, we only skip building/calling resume functions for frames that are resuming on RETURN_VALUE.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165808
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166013, #166015
2025-10-28 03:03:37 +00:00
William Wen
e0ca3049c0 [dynamo, nested graph breaks] remove _dynamo.utils.counter patch on inlined tx'es (#166015)
This `patch.dict(counters, ...` appears to be ancient code that doesn't really seem to be doing anything? It causes issues in nested graph breaks because the patch cleanup clears out the record of the nested graph break. Removing the patch to see if it's even needed in the first place.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166015
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166013
2025-10-28 03:03:37 +00:00
William Wen
8417981c96 [dynamo, nested graph breaks] add TestCaseWithNestedGraphBreaks subclass (#166013)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166013
Approved by: https://github.com/Lucaskabela
2025-10-28 03:03:37 +00:00
Simon Fan
a76b59cc45 [dynamo] local_map error message for reordered inputs (#164780)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164780
Approved by: https://github.com/mlazos
2025-10-28 02:52:41 +00:00
Animesh Jain
8e1e4ee8e0 [reland][dynamo][easy] Support torch.accelerator.current_accelerator (#166327)
Reland https://github.com/pytorch/pytorch/pull/165734

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166327
Approved by: https://github.com/Lucaskabela
2025-10-27 23:41:43 +00:00
Animesh Jain
2ce894bb1d [dynamo] Dont guard on numpy Cython functions (#166328)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166328
Approved by: https://github.com/Lucaskabela
2025-10-27 22:01:10 +00:00
Scott Wolchok
7d16fcf2df Re-re-re-re-apply "C++-accessible Placements via pybind11 (#163030)" (#166132)
Was reverted (again!) due to a merge conflict that crept in sometime during the "export to github -> land internally -> merge on github" process.

D85096233

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166132
Approved by: https://github.com/Skylion007, https://github.com/ezyang, https://github.com/malfet
2025-10-27 21:19:32 +00:00
Animesh Jain
ee7434be82 [dynamo][guards] 1/N Guard selectively for DTensor (#165824)
A few internal jobs are observing very high guard overhead for DTensor.
Since we own DTensor, we can make those guards way faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165824
Approved by: https://github.com/Lucaskabela, https://github.com/bdhirsh
2025-10-27 20:35:40 +00:00
eun2ce
f6951cb8ea [dynamo] Fix recompilation error message to point to new programming model docs (#165260)
Fixes #163496

Updated troubleshooting_url in torch/_dynamo/utils.py to point to the new programming model documentation.

Changed:
- Old: https://pytorch.org/docs/main/torch.compiler_troubleshooting.html
- New: https://pytorch.org/docs/main/compile/programming_model.recompilation.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165260
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42
2025-10-27 19:31:11 +00:00
Animesh Jain
99e07c39ec [dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165707
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166251
2025-10-27 16:47:32 +00:00
Animesh Jain
610c09f8f4 [dynamo] Fix python_type for UserDefinedClassExceptionVariable (#166251)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166251
Approved by: https://github.com/Lucaskabela
2025-10-27 16:47:32 +00:00
Animesh Jain
61bad3c1ea [dynamo] Move some FUNCTION_MATCH to CLOSURE_MATCH (#166244)
Closure match is more relaxed than FUNCTION_MATCH (which is ID_MATCH)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166244
Approved by: https://github.com/Lucaskabela
2025-10-27 16:43:46 +00:00
Maggie Moss
27302a4932 Fix error suppression syntax in onnx, jit, _dynamo (#166249)
Ensures pyrefly will only silence one specific error code

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166249
Approved by: https://github.com/oulgen
2025-10-27 02:01:54 +00:00
Animesh Jain
a2b6afeac5 [dynamo][guards] CLASS_MATCH guard for readability (#166217)
We were using FUNCTION_MATCH guard for classes. This was very confusing
(although correct).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166217
Approved by: https://github.com/jansel
2025-10-26 18:35:27 +00:00
Maggie Moss
c7eee49525 Fix pyrefly ignores 1/n (#166239)
First diff adjusting the syntax for pyrefly: ignore suppressions so they only hide one class of type error.

Test:
lintrunner
pyrefly check

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166239
Approved by: https://github.com/oulgen
2025-10-26 00:44:10 +00:00
Maggie Moss
eb83c3ca23 Clean up unused Pyrefly suppressions (#166178)
Cleaning up ignores that are no longer needed in the repo and adding select suppressions so the main branch is clean.

test plan:
`lintrunner -a`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166178
Approved by: https://github.com/oulgen
2025-10-25 05:32:21 +00:00
bobrenjc93
1d58d5fe25 [hops] fix unbacked runtime asserts for cond higher order op (#165893)
At a high level after this fix we get the following nice tlparse https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/bobren/54a57665-7dcc-41e0-8ca7-df01393cd4aa/custom/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000

As seen in this doc, previously we were simply dropping assert post
dynamo: https://docs.google.com/document/d/1nRQwvw_gWL0_9T3VKb5Ly3_tNI1fgqG9WtryeD6qaZI/edit?tab=t.0

The fixes are a couple things:

1) Actually run the runtime assertion fx graph pass on subgraphs
2) Reset fake mode unbacked memo across speculate subgraph invocations
   since the memos actually break the runtime assertion insertions since
   calls like nonzero end up not allocating new unbacked symints and
   hence not populating pending_unbacked which then results in incorrect
   unbacked_bindings on fx_nodes in subgraphs.

This is a first step in hardening runtime asserts across all phases of
the compiler (eager, aot_eager, inductor, etc.). I will continue kicking
tires and fixing bugs until we get runtime assert generations in a good
place. One obvious next step is the added test case in this PR fails
when compiled with inductor with the following error (NB: it fails before this PR as well):

```
  File "/data/users/bobren/a/pytorch/torch/_inductor/ir.py", line 659, in get_dtype
    return self.dtype
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
LoweringException: AttributeError: 'ShapeAsConstantBuffer' object has no attribute 'dtype'
  target: cond
  args[0]: Eq(Mod(s77, 4), 0)
  args[1]: Subgraph(name='true_graph_0', graph_module=<lambda>(), graph=<torch._inductor.graph.SubgraphLowering object at 0x7fbcbb11e110>)
  args[2]: Subgraph(name='false_graph_0', graph_module=<lambda>(), graph=<torch._inductor.graph.SubgraphLowering object at 0x7fbcbb21cf70>)
  args[3]: (s77, TensorBox(StorageBox(
    ComputedBuffer(name='buf0', layout=FlexibleLayout('cuda:0', torch.float32, size=[s77, s77], stride=[s77, 1]), data=Pointwise(device=device(type='cuda', index=0), dtype=torch.float32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x7fbcbb2f37f0>, ranges=[s77, s77]))
  )))
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165893
Approved by: https://github.com/zou3519
2025-10-25 03:25:36 +00:00
Animesh Jain
0a5d68d92d [dynamo] Remove unnecessary NAME_MATCH guard (#166112)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166112
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166155
2025-10-25 01:27:42 +00:00
Animesh Jain
42bd210fff [dynamo] Avoid ID_MATCH on methods - use CLOSURE_MATCH on functions (#166155)
id on methods can change from invocation to invocation. Here we guard on
__code__ objects which does not change

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166155
Approved by: https://github.com/jansel
2025-10-25 01:27:42 +00:00
Yuanyuan Chen
9d0b77f4cd [10/N] Apply ruff UP035 rule (#165709)
This is a follow-up of #165515. ruff `UP035` rules are applied to  dynamo code to use Py 3.10+ typing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165709
Approved by: https://github.com/ezyang
2025-10-25 00:20:13 +00:00
Xiao
6038e476e8 [Dynamo][Logging]Fix regression on stack adding to latest bytecode by… (#165946)
… adding verbose check (#165926)

[ghstack-poisoned]

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165946
Approved by: https://github.com/williamwen42
2025-10-24 20:36:50 +00:00
Animesh Jain
bf5aa9e42e [dynamo] Remove ID guard on method object (#166096)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166096
Approved by: https://github.com/tugsbayasgalan
2025-10-23 06:22:49 +00:00
Animesh Jain
2e8e9a59a8 Revert "[dynamo][easy] Support torch.accelerator.current_accelerator (#165734)" (#166094)
This reverts commit c18ddfc572.

Discovers some latent issues causing internal failures. Will fix those issues first and resend the PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166094
Approved by: https://github.com/bdhirsh
2025-10-23 01:24:46 +00:00
zhxchen17
757975ad50 [export] Unified graph capture with fullgraph_capture. (#165562)
Summary:
_dynamo_graph_capture_for_export in the current form has the compability issue
with the main torch.compile() path despite we reuse fullgraph_capture as the
bytecode tracer. The reason is that we flip on many export specific flags
and even trace with a wrapped function which will cause divergence with
torch.compile() again.

This PR instead creates a new implementation of dynamo_graph_capture_for_export
which 100% relies on fullgraph capture and post-processing on CaptureOutput so
that we can avoid the inversion of phases in PT2 compiler stack.

This also benefits precompile workflow since we want to have a feature that
only accepts pytree inputs and ship portable python wrappers in package. In
other words, I think the code here is sharable between export and precompile
for exporting portable graph.

Test Plan:
===================================================================== test session starts =====================================================================
platform linux -- Python 3.12.11, pytest-7.3.2, pluggy-1.6.0
rootdir: /data/users/zhxchen17/pytorch
configfile: pytest.ini
plugins: xdoctest-1.1.0, hypothesis-5.35.1, xdist-3.3.1, subtests-0.13.1, rerunfailures-14.0, flakefinder-1.1.0, cpp-2.3.0, anyio-4.10.0
collected 9 items
Running 9 items in this shard

test/distributed/tensor/test_dtensor_export.py ........x                                                                                                [100%]

================================================================ 8 passed, 1 xfailed in 11.42s ================================================================

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165562
Approved by: https://github.com/tugsbayasgalan
2025-10-22 20:44:55 +00:00
Animesh Jain
291712026b [dynamo][user_defined] Replace UserFunctionVariable with VariableTracker build (#165706)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165706
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42
2025-10-22 19:28:27 +00:00
Colin L Reliability Rice
5f370f5c42 inductor_provenance: Correctly handle null provenance (#166019)
Summary:
If the provenance is null, we're getting crashes of the form
```
[trainers0]:E1021 10:51:31.990525  2752 PythonApi.h:87] Exception caught in
GeneratedDynamoCompileLoggerConfig: <class
'dsi.logger.py3.GeneratedDynamoCompile.LogEntry.thrift_types.GeneratedDynamoCompileLogEntryThriftBase'>:
error initializing Thrift struct field 'inductor_provenance_thrift_safe':
Cannot create internal string data representation. Expected type <class 'str'>,
got: <class 'NoneType'>.
```

Also fixed a type signature that wasn't being enforced. (It's still not
enforced, but it's accurate).

Test Plan:
Added a new test which reproduces the logging issue

Differential Revision: D85173596

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166019
Approved by: https://github.com/ppanchalia, https://github.com/yushangdi
2025-10-22 18:21:57 +00:00
Yidi Wu
282f39a4bc [vmap][dynamo] use create_proxy instead of create_node in vmap increate nesting ctx manager (#165675)
create_node won't do the auto closure lifting, this cause problems when the context manager is used in a hop region. Switch to create_proxy instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165675
Approved by: https://github.com/zou3519, https://github.com/guilhermeleobas
2025-10-22 09:46:00 +00:00
can-gaa-hou
a479769488 [dynamo] Clean up assert in dynamo [2/N] (#165745)
Extend from #165430
* #165903(Clean up for graph break)
* ->#165745
* #165430

One main refractor from the previous PR:
* For assertions like checking `len(args)` or `len(kwargs)`, using `raise_args_mismatch` instead of `raise_type_error_exc`

I am also considering moving `raise_type_error_exc` into `utils.py` for consistency.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165745
Approved by: https://github.com/Lucaskabela
2025-10-22 07:12:37 +00:00
Rob Timpe
550e3e6efb [dynamo] Fix MATCH_KEYS for dict pattern matching (#165956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165956
Approved by: https://github.com/guilhermeleobas, https://github.com/cyyever
2025-10-22 02:52:07 +00:00
Animesh Jain
60992d98b2 [dynamo][remaining] Replace UserFunctionVariable with VariableTracker build (#165896)
Audit: To prevent future issues with functools.partial or callable objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165896
Approved by: https://github.com/Lucaskabela
2025-10-22 02:13:00 +00:00
Guilherme Leobas
f5df9ca03a Fix creation of BINARY_SUBSCR in Python 3.14+ (#165864)
Python 3.14 replaced `BINARY_SUBSCR` by `BINARY_OP(opcode=BN_SUBSCR)`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165864
Approved by: https://github.com/williamwen42
2025-10-22 01:43:03 +00:00
Animesh Jain
830e789a55 [dynamo][annotate] Graph break cleanly on fx.traceback.annotate reconstruction (#166006)
This avoids generation of bad bytecode, leading to really confusing
error. I am not sure why we can't reconstruct cleanly, it has to do with
the input being a dict, while other supported ctx managers take bools.

Fixing that is for another day. Lets give a good error message for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166006
Approved by: https://github.com/yushangdi, https://github.com/SherlockNoMad
2025-10-21 20:48:04 +00:00
PyTorch MergeBot
ce8a7764e2 Revert "[dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)"
This reverts commit 1290b077f2.

Reverted https://github.com/pytorch/pytorch/pull/165707 on behalf of https://github.com/clee2000 due to failing internal tests D85160820 ([comment](https://github.com/pytorch/pytorch/pull/165707#issuecomment-3429084393))
2025-10-21 19:25:03 +00:00
Tugsbayasgalan Manlaibaatar
2fc5e45a41 better error message when there is no pytree impl (#165955)
Differential Revision: [D85117597](https://our.internmc.facebook.com/intern/diff/D85117597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165955
Approved by: https://github.com/avikchaudhuri
2025-10-21 18:49:22 +00:00
James Wu
06773663b5 Implement an AOT precompile mode for standalone_compile (#165843)
This PR introduces an `aot` flag to standalone_compile that uses BundledAOTAutogradCacheEntry, and then allows regional_inductor to use this so that we can start aot compiling regional compiler graphs. The diff above this will attempt to allow GraphPickler to fully serialize graphs that have regionally compiled subgraphs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165843
Approved by: https://github.com/oulgen
2025-10-21 15:02:45 +00:00
Xuehai Pan
1009790ad8 [pytree][dynamo] trace on native optree functions for community pytree support (#165860)
Resolves #164972

- #164972

All `torch.utils._cxx_pytree` functions are based on `optree` functions with hardcoded `none_is_leaf=True` and `namespace="torch"`. This PR changes the polyfills to generic `optree` functions with those arguments unhardcoded. This means `torch.utils._cxx_pytree` functions are still traceable while the community `optree` usages can get dynamo support additionally.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165860
Approved by: https://github.com/Lucaskabela
2025-10-21 14:13:08 +00:00
Animesh Jain
1290b077f2 [dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165707
Approved by: https://github.com/Lucaskabela
2025-10-21 09:27:41 +00:00
Animesh Jain
771170807b [dynamo][nn_module] Replace UserFunctionVariable with VariableTracker build (#165708)
Audit: To prevent future issues with functools.partial or callable objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165708
Approved by: https://github.com/Lucaskabela
2025-10-21 04:13:12 +00:00
Yuanyuan Chen
0e083942cc Enable PLW0127 in ruff (#165851)
This PR enables `PLW0127` in ruff, which checks self-assignment of variables with the form `var=var`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165851
Approved by: https://github.com/Lucaskabela
2025-10-21 03:30:57 +00:00
Shangdi Yu
4a6cf0a93e Fix dynamo stack trace (#165930)
Fixes #165911

- Add message to Attribute error so we see `  Developer debug context: raised exception AttributeError(["'Linear' object has no attribute 'w'"])` instead of just `Developer debug context: raised exception AttributeError([])`
- Add stack trace in `ObservedException` so we display the inner most error stack trace back to user code

Output:

```
/data/users/shangdiy/pytorch/torch/__init__.py:2641: UserWarning: You are calling torch.compile inside torch.export region. To capture an useful graph, we will implicitly switch to torch.compile(backend=eager)
  warnings.warn(
Traceback (most recent call last):
  File "/data/users/shangdiy/pytorch/torch/_dynamo/variables/user_defined.py", line 1385, in var_getattr
    subobj = self._getattr_static(name)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/shangdiy/pytorch/torch/_dynamo/variables/user_defined.py", line 1256, in _getattr_static
    subobj = type(self.value).__getattribute__(self.value, name)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'Linear' object has no attribute 'w'

During handling of the above exception, another exception occurred:

torch._dynamo.exc.ObservedAttributeError: 'Linear' object has no attribute 'w'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/data/users/shangdiy/pytorch/test.py", line 34, in <module>
    mod = torch._dynamo.functional_export._dynamo_graph_capture_for_export(Model())(x)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/shangdiy/pytorch/torch/_dynamo/functional_export.py", line 481, in inner
    out = fullgraph_capture(
          ^^^^^^^^^^^^^^^^^^
  File "/data/users/shangdiy/pytorch/torch/_dynamo/convert_frame.py", line 1053, in fullgraph_capture
    return _fullgraph_capture_frame(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/shangdiy/pytorch/torch/_dynamo/convert_frame.py", line 1115, in _fullgraph_capture_frame
    raise e.with_traceback(None) from e.__cause__  # User compiler error
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch._dynamo.exc.Unsupported: Observed exception
  Explanation: Dynamo found no exception handler at the top-level compiled function when encountering an exception. Exception will propagate outside the compiled region.
  Hint: Dynamo has detected that tracing the code will result in an error when running in eager. Please double check that your code doesn't contain a similar error when actually running eager/uncompiled.
  Hint: It may be possible to write Dynamo tracing rules for this code. Please report an issue to PyTorch if you encounter this graph break often and it is causing performance issues.

  Developer debug context: raised exception AttributeError(["'Linear' object has no attribute 'w'"])

 For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0088.html

from user code:
   File "/data/users/shangdiy/pytorch/torch/_dynamo/functional_export.py", line 171, in forward
    res = self._export_root(*args, **kwargs)
  File "/data/users/shangdiy/pytorch/test.py", line 31, in forward
    weight = self.linear.w

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165930
Approved by: https://github.com/anijain2305
2025-10-21 01:32:23 +00:00
PyTorch MergeBot
0bf604320f Revert "[dynamo][user_defined] Replace UserFunctionVariable with VariableTracker build (#165706)"
This reverts commit 1dc9a05d03.

Reverted https://github.com/pytorch/pytorch/pull/165706 on behalf of https://github.com/clee2000 due to breaking internal tests D84961097 ([comment](https://github.com/pytorch/pytorch/pull/165706#issuecomment-3423059867))
2025-10-20 17:28:58 +00:00
PyTorch MergeBot
9875e70da8 Revert "[dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)"
This reverts commit 630520b346.

Reverted https://github.com/pytorch/pytorch/pull/165707 on behalf of https://github.com/clee2000 due to breaking internal tests D84961097 ([comment](https://github.com/pytorch/pytorch/pull/165706#issuecomment-3423059867))
2025-10-20 17:28:58 +00:00
Animesh Jain
722b2b86c9 [dynamo] Remove duplicated guards (#165806)
This is by looking at a tlparse of an internal job. We will need deeper audit.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165806
Approved by: https://github.com/jansel
2025-10-20 05:50:33 +00:00
Parshant Sharma
8139f33fa5 [dynamo] Add recompile reason for set_stance fail_on_recompile (#165445)
Fixes #163500

### Summary:
For `set_stance("fail_on_recompile")` failures will provide the reason why the recompilation occurred

### Impacts:
module: dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165445
Approved by: https://github.com/williamwen42
2025-10-19 21:12:19 +00:00
can-gaa-hou
a88587348b [dynamo] Clean up assert in dynamo [1/N] (#165430)
Fixes some part of #162852 and #164878. These two issues have some relationship though.

* __->__ #165430

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165430
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42

Co-authored-by: Lucas Kabela <lucasakabela@gmail.com>
2025-10-19 21:00:05 +00:00
Tugsbayasgalan Manlaibaatar
22ae059d32 AOTI util deprecated flow using the new tracer (#165582)
Reapply of https://github.com/pytorch/pytorch/pull/163260

AOTI utils expect free function sometimes so adjust export API to handle that, haven't seen any methods getting exported. Some AOTI flows also require we populate dynamo_flat_name_to_original_fqn so i just copy how it is done in eval_frame.py. I also cleaned up how we get rid of export_root and fixed some overcomplicated nn_module_stack handling in export code. The logic is simpler now thanks to @anijain2305 .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165582
Approved by: https://github.com/anijain2305
2025-10-19 15:52:16 +00:00
Yu, Guangye
b2f5c25b27 Introduce a generic API torch._C._accelerator_setAllocatorSettings (#165291)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165291
Approved by: https://github.com/albanD
ghstack dependencies: #165288, #165289
2025-10-19 15:34:36 +00:00
Yuanyuan Chen
3255e7872b Enable all flake8-logging-format rules (#164655)
These rules are enabled by removing existing suppressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164655
Approved by: https://github.com/janeyx99, https://github.com/mlazos
2025-10-19 00:59:28 +00:00
Yuanyuan Chen
fdab48a7c1 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 07:36:18 +00:00
PyTorch MergeBot
24520b8386 Revert "Enable all PIE rules on ruff (#165814)"
This reverts commit c79dfdc655.

Reverted https://github.com/pytorch/pytorch/pull/165814 on behalf of https://github.com/cyyever due to Need to cover more files ([comment](https://github.com/pytorch/pytorch/pull/165814#issuecomment-3417931863))
2025-10-18 07:21:08 +00:00
Yuanyuan Chen
c79dfdc655 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 06:40:12 +00:00
Yuanyuan Chen
e595136187 Enable PLC1802 on ruff (#165813)
This PR enables ruff check `PLC1802`, which detects len calls on sequences in a boolean test context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165813
Approved by: https://github.com/ezyang
2025-10-18 05:44:14 +00:00
Animesh Jain
d9f94e0d7d [dynamo] Support fx.traceback.annotate as decorator (#165805)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165805
Approved by: https://github.com/Lucaskabela, https://github.com/SherlockNoMad, https://github.com/yushangdi
2025-10-18 03:58:11 +00:00
Yiming Zhou
e4d6c56ffb Improve dynamo graph capture stack trace for custom ops (#165693)
For a custom op
```
@torch.library.custom_op("my_lib::foo", mutates_args={})
def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    return x + y
```
ppl could call `torch.ops.my_lib.foo()` or directly call `foo()` in the `forward` of an `nn.Module`

These two calling conventions will lead to the same node in the output graph, but different stack traces.

When directly calling `foo()`, the displayed stack_trace in the graph will be
```
# File: .../pytorch/torch/_library/custom_ops.py:687 in __call__, code: return self._opoverload(*args, **kwargs)
```
This is not useful so we filter it out.

```
python test/functorch/test_aot_joint_with_descriptors.py -k test_custom_op_stack_trace
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165693
Approved by: https://github.com/SherlockNoMad, https://github.com/williamwen42
2025-10-18 03:48:18 +00:00
Laith Sakka
c6a8db0b9a Fix issues with generalized_scatter and setitem allocated unbacked symbols. (#164341)
Three fixes:
1. When doing t[u0] +=1  if u0 is unbacked we could allocate a new unbacked symbol during the the indexing of t[u0] (when we fake trace setitem), namely because meta_select does allocate a new unbacked symbol for the storage offset when we do not know if u0>=0 or u0<0.  but the output size/stride of setitem(), does not depend on that new symbol. it's self consumed in setitem so we shall ignore it.

2. Also when we trace through generalized_scatter the applications of the views could allocate unbacked symints
but those do not effect final output, we also shall ignore them.

3.Before accessing strides in lowering we shall materialize.

Address  https://github.com/pytorch/pytorch/issues/114293 and https://github.com/pytorch/pytorch/issues/131911

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164341
Approved by: https://github.com/bobrenjc93
2025-10-18 03:20:30 +00:00
Animesh Jain
616c6bdf8f [dynamo][ac] Config flag to allow eager and compile AC divergence for side-effects (#165775)
Eager AC/SAC reapplies the mutations (like global dict mutations) in the backward during the recomputation of forward. torch.compile has no easy way to reapply python mutations in the backward. But many users might be ok to skip reapplication of side effects in the backward. They can set this config flag to accept this eager and compile divergence.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165775
Approved by: https://github.com/zou3519
ghstack dependencies: #165734
2025-10-17 22:04:19 +00:00
Animesh Jain
c18ddfc572 [dynamo][easy] Support torch.accelerator.current_accelerator (#165734)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165734
Approved by: https://github.com/Skylion007
2025-10-17 22:04:19 +00:00
Zhengxu Chen
86ebce1766 [precompile] Pass tensor_to_context to backend. (#165702)
Summary:

Fixing a VLLM issue https://github.com/vllm-project/vllm/issues/27040 where
aot precompile fails on some models using symbolic shapes in inductor.

Test Plan:
pp HF_HUB_DISABLE_XET=1 VLLM_ENABLE_V1_MULTIPROCESSING=0 VLLM_USE_AOT_COMPILE=1 vllm bench latency --model microsoft/DialoGPT-small --input-len 128 --output-len 256 --num-iters 50 --dtype float16

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165702
Approved by: https://github.com/tugsbayasgalan
2025-10-17 21:52:04 +00:00
Tugsbayasgalan Manlaibaatar
08c97b4a1f Don't run compile inside kernel invocation (#165687)
When we call torch.compile during fake tensor prop, we shouldn't actually compile because we can't guarantee that the compiled artifact can be fake tensor prop-d. (for example, inductor backend). Instead we should just skip compiling. However, the inner compile will be triggered when being executed in runtime.

Fixes: https://github.com/pytorch/pytorch/issues/151328

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165687
Approved by: https://github.com/zou3519
2025-10-17 19:03:57 +00:00
Colin L Reliability Rice
ca5b7f8ded torch.compile: populate compiler_config (#165581)
Summary: This starts writing the compiler_config metadata into logger

Test Plan:
Modified existing test case to make sure this is not null.
(Also eyeballed what we're logging tomake sure it's reasonable

Reviewed By: masnesral

Differential Revision: D84014636

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165581
Approved by: https://github.com/masnesral
2025-10-17 18:21:18 +00:00
jmaczan
cff1b20771 Patch the flex_attention._get_mod_type to not use inspect.signature when computing num_positional_args (an alternative fix for flex attention graph break on create_block_mask) (#164923)
The initial fix for inspect.signature uses not a right approach (https://github.com/pytorch/pytorch/pull/164349#pullrequestreview-3306614010). As @williamwen42 suggests (https://github.com/pytorch/pytorch/pull/164349#issuecomment-3379222885) we can just for now get rid of `inspect.signature` call in flex_attention to resolve this high priority issue (https://github.com/pytorch/pytorch/issues/164247#issuecomment-3378673179). In this PR I did exactly this - limited the scope of fix to just computing `num_positional_args` in `flex_attention._get_mod_type` based on properties returned by `NestedUserFunctionVariable.const_getattr` (some were missing so I added them)

Fixes #164247

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164923
Approved by: https://github.com/williamwen42
2025-10-17 17:44:45 +00:00
Animesh Jain
630520b346 [dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165707
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #165683, #165706
2025-10-17 17:02:18 +00:00
Animesh Jain
1dc9a05d03 [dynamo][user_defined] Replace UserFunctionVariable with VariableTracker build (#165706)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165706
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #165683
2025-10-17 17:02:18 +00:00
Animesh Jain
24879f0de9 [dynamo] Use Variable Builder to build the property fget object (#165683)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165683
Approved by: https://github.com/ezyang, https://github.com/williamwen42
2025-10-17 06:29:24 +00:00
Colin L Reliability Rice
98a488c9aa Start recording inductor provenance (#162669)
Summary:
This stores information on where fx graphs come from, which makes it
significantly easier to debug.

One outstanding question

1) I only stored the kernel stack traces, do we also want the node mappings?

Test Plan:
I wrote a explicit logging test which makes a module, fx traces it, compiles it, and makes sure the logging infomration shows up.

```
clr@devvm17763 ~/fbsource/fbcode/caffe2/test/dynamo
 % buck2 test @//mode/opt fbcode//caffe2/test/dynamo:test_dynamo -- test_utils

File changed: fbsource//xplat/caffe2/test/dynamo/test_utils.py
File changed: fbcode//caffe2/test/dynamo/test_utils.py
Buck UI: https://www.internalfb.com/buck2/528dea32-2416-4a62-a1ec-39f3c0efdd2e
Test UI: https://www.internalfb.com/intern/testinfra/testrun/13229324015574003
Network: Up: 0B  Down: 0B
Executing actions. Remaining     0/2
Command: test.
Time elapsed: 17.3s
Tests finished: Pass 16. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Rollback Plan:

Differential Revision: D82037582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162669
Approved by: https://github.com/yushangdi
2025-10-16 23:05:31 +00:00
Maggie Moss
d795fb225a [RFC] Add pyrefly to lintrunner (#165179)
This will add pyrefly to lint runner as a warning only - and allow us to collect feedback about the tool before switching to pyrefly as the main type checker.

References the steps outlined here: : https://github.com/pytorch/pytorch/issues/163283:

test plan:
`lintrunner init`
`lintrunner`
confirm when pyrefly errors are present results look like: https://gist.github.com/maggiemoss/e6cb2d015dd1ded560ae1329098cf33f

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165179
Approved by: https://github.com/ezyang
2025-10-16 20:07:09 +00:00
arkadip-maitra
1a34ff4e04 Fixing get_local_rank() variable missing when compiled (#165432)
Fixes #165215

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165432
Approved by: https://github.com/bdhirsh
2025-10-16 18:20:34 +00:00
Lucas Kabela
e6d9d68598 [Bugfix][Dynamo] Fix Sparse tensors by graph break in Dynamo (#164873)
Fixes #164823 by making lack of support for sparse tensors very explicit (in fake tensor, inductor, and lowering code)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164873
Approved by: https://github.com/williamwen42, https://github.com/eellison, https://github.com/mlazos
2025-10-16 15:06:20 +00:00
jmaczan
003dd13073 [dynamo, guards] Better error messages when generated guard fails on the same frame (#165242)
Not sure what exactly we want to have in the message, but that's easy to adjust. I tried to find a reliable test to reproduce this message (happens only when a guard fails right after it's created), but I ended up mocking a `guard_manager.check` function to return `False` to trigger this behavior. I think that's fine, because any other case that we pick (like datetime.now()), we want to patch one day anyway, so every time we make the next patch, will need to chase for another repro test

@williamwen42

Fixes #164990

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165242
Approved by: https://github.com/williamwen42
2025-10-16 01:05:31 +00:00
Xiao Fu
568d2f3ae7 [Dynamo][Logging] Add sources/types to LazyVariableTracker logging (#165402)
Fixes #162860

This task add the variable source attrition to LazyVariableTracker when output trace bytecode

Test plan -- test/dynamo/test_error_messages.py ErrorMessagesTest.test_variable_tracker_source_attribution

The output is as specified in the prior mentioned Github issue.

<img width="961" height="59" alt="Screenshot 2025-10-13 at 10 19 44 PM" src="https://github.com/user-attachments/assets/fb27da3f-d00b-437b-bf2e-52e892572cd7" />

This is specifically for the log setup with ``TORCH_LOGS=trace_bytecode``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165402
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42

Co-authored-by: William Wen <williamwen@meta.com>
2025-10-15 23:23:09 +00:00
James Wu
b54e466fd0 Megacache integration (#163533)
This diff adds megacache integration for DynamoCache.

Because DynamoCache requires lazy serialization, i.e. it can only be serialized once all relevant backends have been compiled and we're ready for a save, we actually do the DynamoCache saving only on a call to `torch.compiler.save_cache_artifacts`.

Differential Revision: [D82735763](https://our.internmc.facebook.com/intern/diff/D82735763/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163533
Approved by: https://github.com/oulgen, https://github.com/zhxchen17
2025-10-15 22:49:15 +00:00
Richard Zou
e787d532b6 tmp fix for compile internal logger issue (#165568)
Summary: Catch runtime exception when garse and scrub uninteresting configs from inductor config

Test Plan: tested locally

Differential Revision: D84727788

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165568
Approved by: https://github.com/luccafong, https://github.com/oulgen
2025-10-15 22:03:16 +00:00
Tugsbayasgalan Manlaibaatar
2395d7d7da Relax equality check (#165460)
When an object is inherited from multiple types, the previous check would fail. So we should relax it to respect eager semantic

Differential Revision: [D84635322](https://our.internmc.facebook.com/intern/diff/D84635322)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165460
Approved by: https://github.com/avikchaudhuri
2025-10-15 18:32:01 +00:00
Zhengxu Chen
839f6facdb [precompile] Fix frame construction for wrapped model. (#165454)
Summary: If a function is wrapped with functools, we should not look at the wrapped function signature but rather the wrapper, since we need to construct the frame for the top level function here.

Test Plan: test_decorated_function_with_functools_wrap_aot

Differential Revision: D84626752

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165454
Approved by: https://github.com/yiming0416
2025-10-15 02:01:46 +00:00
sekyonda
c467e59cb0 dynamo configs to torch.compiler (#163517)
Moving some dynamo configs to torch.compiler

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163517
Approved by: https://github.com/williamwen42, https://github.com/anijain2305

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2025-10-14 22:44:53 +00:00
PyTorch MergeBot
a2f34bdd7c Revert "Patch the flex_attention._get_mod_type to not use inspect.signature when computing num_positional_args (an alternative fix for flex attention graph break on create_block_mask) (#164923)"
This reverts commit 3401665110.

Reverted https://github.com/pytorch/pytorch/pull/164923 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/164923#issuecomment-3403654378))
2025-10-14 21:20:49 +00:00
Guilherme Leobas
d18e068fd6 [dict] Implement __eq__ for dict_items (#155154)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155154
Approved by: https://github.com/anijain2305
2025-10-14 18:56:51 +00:00
jmaczan
3401665110 Patch the flex_attention._get_mod_type to not use inspect.signature when computing num_positional_args (an alternative fix for flex attention graph break on create_block_mask) (#164923)
The initial fix for inspect.signature uses not a right approach (https://github.com/pytorch/pytorch/pull/164349#pullrequestreview-3306614010). As @williamwen42 suggests (https://github.com/pytorch/pytorch/pull/164349#issuecomment-3379222885) we can just for now get rid of `inspect.signature` call in flex_attention to resolve this high priority issue (https://github.com/pytorch/pytorch/issues/164247#issuecomment-3378673179). In this PR I did exactly this - limited the scope of fix to just computing `num_positional_args` in `flex_attention._get_mod_type` based on properties returned by `NestedUserFunctionVariable.const_getattr` (some were missing so I added them)

Fixes #164247

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164923
Approved by: https://github.com/williamwen42
2025-10-14 18:29:15 +00:00
Animesh Jain
c9b2a09530 [export] Turn on install_free_tensors flag (#164691)
The final step in removing the discrepancy between
torch.compile(fullgraph=True) and torch.export(strict=True).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164691
Approved by: https://github.com/avikchaudhuri
2025-10-14 15:33:50 +00:00
Yuanyuan Chen
fbe0d20a17 [2/N] More ruff SIM fixes (#165031)
This is follow-up of #164695 to apply ruff SIM rules to more files. Most changes are about simplifying dict.get because None is already the default value.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165031
Approved by: https://github.com/mlazos
2025-10-14 14:22:54 +00:00
Michael Lazos
bc6e08954d [user-cuda-streams] Add fork/join custom ops (#162900)
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes.

Make custom ops inplace

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162900
Approved by: https://github.com/anijain2305
ghstack dependencies: #163027, #162899, #163028
2025-10-14 05:43:19 +00:00
Michael Lazos
45a96b2081 [user-streams] Handle aliasing properly (#163028)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163028
Approved by: https://github.com/williamwen42, https://github.com/anijain2305
ghstack dependencies: #163027, #162899
2025-10-14 05:43:19 +00:00
Michael Lazos
04e36611bb [user-cuda-streams] Pass streams/events to the graph via lookup table (#162899)
Stores streams in a global object look table that maps a dynamo selected index to objects. This index is generated during tracing, and at runtime, a helper function is called from the bytecode to populate this map.

This differs from the previous implementation that simply mapped IDs to the associated objects. This required specialization on the IDs of the specific objects, while this new approach does not.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162899
Approved by: https://github.com/anijain2305
ghstack dependencies: #163027
2025-10-14 05:43:19 +00:00
Michael Lazos
f15c25d5c3 [user-streams] Move stream code to streams module (#163027)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163027
Approved by: https://github.com/StrongerXi, https://github.com/anijain2305
2025-10-14 05:43:19 +00:00
PyTorch MergeBot
fa3916f466 Revert "[export] Turn on install_free_tensors flag (#164691)"
This reverts commit 220a34118f.

Reverted https://github.com/pytorch/pytorch/pull/164691 on behalf of https://github.com/seemethere due to Breaks some internal things, both me and author agreed that revert was the best course of action ([comment](https://github.com/pytorch/pytorch/pull/164691#issuecomment-3400013759))
2025-10-14 03:58:12 +00:00